
MetaPool - Liquid
Staking

NEAR Smart Contract Security
Audit

Prepared by: Halborn

Date of Engagement: March 16th, 2023 - April 7th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 8

2 RISK METHODOLOGY 9

2.1 EXPLOITABILITY 10

2.2 IMPACT 11

2.3 SEVERITY COEFFICIENT 13

2.4 SCOPE 15

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 16

4 FINDINGS & TECH DETAILS 17

4.1 (HAL-01) DENIAL OF SERVICE CONDITION DUE TO STORAGE BLOATING -

MEDIUM(5.0) 19

Description 19

Code Location 19

BVSS 20

Proof Of Concept 20

Recommendation 25

Remediation Plan 25

4.2 (HAL-02) USAGE OF OUTDATED DEPENDENCIES - INFORMATIONAL(0.0) 26

Description 26

Code Location 26

1

BVSS 27

Recommendation 27

Remediation Plan 27

4.3 (HAL-03) REDUNDANT STATE VALIDATION - INFORMATIONAL(0.0) 28

Description 28

Code Location 28

BVSS 30

Recommendation 30

Remediation Plan 30

4.4 (HAL-04) FUNCTION CAN BE REPLACED BY MACRO - INFORMATIONAL(0.0)

31

Description 31

Code Location 31

BVSS 31

Recommendation 31

Remediation Plan 31

4.5 (HAL-05) DEAD CODE - INFORMATIONAL(0.0) 32

Description 32

Code Location 32

BVSS 33

Recommendation 33

Remediation Plan 33

4.6 (HAL-06) POSSIBLE OPTIMIZATIONS TO REDUCE BINARY SIZE - INFOR-

MATIONAL(0.0) 34

Description 34

2

BVSS 34

Recommendation 34

Remediation Plan 34

4.7 (HAL-07) UNNECESSARY PROMISE - INFORMATIONAL(0.0) 35

Description 35

Code Location 35

BVSS 35

Recommendation 36

Remediation Plan 36

4.8 (HAL-08) TYPO IN SIMULATION TESTING CAUSES FUZZ TESTS NOT TO

EXECUTE PROPERLY - INFORMATIONAL(0.0) 37

Description 37

Code Location 37

BVSS 39

Recommendation 39

Remediation Plan 39

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 04/07/2023 Michal Bajor

0.2 Document Updates 04/07/2023 Michal Bajor

0.3 Final Draft 04/07/2023 Michal Bajor

0.4 Draft Review 04/10/2023 Alpcan Onaran

0.5 Draft Review 04/10/2023 Gabi Urrutia

0.6 Document Updates 04/15/2023 Michal Bajor

0.7 Draft Review 04/16/2023 Alpcan Onaran

0.8 Draft Review 05/16/2023 Gabi Urrutia

1.0 Remediation Plan 06/07/2023 Michal Bajor

1.1 Remediation Plan Review 06/07/2023 Alp Onaran

1.2 Remediation Plan Review 06/07/2023 Piotr Cielas

1.3 Remediation Plan Review 06/09/2023 Gabi Urrutia

4

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

Alp Onaran Halborn Alpcan.Onaran@halborn.com

Michal Bajor Halborn Michal.Bajor@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Alpcan.Onaran@halborn.com
mailto:Michal.Bajor@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

MetaPool engaged Halborn to conduct a security audit on their smart

contracts beginning on March 16th, 2023 and ending on April 7th, 2023

. The security assessment was scoped to the smart contracts provided in

the GitHub repository liquid-staking-contract. Commit hashes and further

details can be found in the Scope section of this report. MetaPool

contract is a liquid staking solution that acts as a staking pool.

Underneath, user’s deposits are distributed among other staking pools.

Users get the token representing their stake. One of the core features of

MetaPool contract is the possibility of immediate unstake which requires

users to pay a fee; however, they do not need to wait four epochs to

complete the unstaking process.

1.2 AUDIT SUMMARY

The team at Halborn was provided 3 weeks for the engagement and as-

signed one full-time security engineer to audit the security of the

smart contracts in scope. The security engineer is a blockchain and

smart-contract security expert with advanced penetration testing and

smart-contract hacking skills, and deep knowledge of multiple blockchain

protocols.

The purpose of this audit is to:

• Identify potential security issues within the smart contracts

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks, which were mostly addressed by MetaPool . The main

one is the following:

(HAL-01) DENIAL OF SERVICE CONDITION DUE TO STORAGE BLOATING

It was observed that a malicious user could cause MetaPool contract to

enter a Denial Of Service condition with many deposits to dummy accounts.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Meta-Pool/liquid-staking-contract

MetaPool **successfully** remediated the issue by implementing a storage

fee mechanism.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow security

best practices.

The following phases and associated tools were used throughout the term

of the audit:

• Research into the architecture, purpose, and use of the platform.

• Smart contract manual code review and walkthrough to identify any

logic issue.

• Mapping out possible attack vectors

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could lead to arithmetic vulnerabilities.

• Finding unsafe Rust code usage (cargo-geiger)

• On chain testing of core functions(near-cli, NEAR-API-JS)

• Deployment of Smart Contracts (kurtosis, near localnet)

• Scanning dependencies for known vulnerabilities (cargo audit).

8

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

11

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

12

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

13

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

14

EX
EC

UT
IV

E
OV

ER
VI

EW

2.4 SCOPE

Code repositories:

1. Liquid Staking

• Repository: liquid-staking-contract

• Commit ID: f920e6f65e5cf53f0b429d48175a54998dc16996

• Smart Contracts in scope:

1. MetaPool (metapool/)

Out-of-scope: External libraries and financial related attacks.

15

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Meta-Pool/liquid-staking-contract
https://github.com/Meta-Pool/liquid-staking-contract/commit/f920e6f65e5cf53f0b429d48175a54998dc16996

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 0 7

16

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

DENIAL OF SERVICE CONDITION DUE TO
STORAGE BLOATING

Medium (5.0) SOLVED - 05/11/2023

USAGE OF OUTDATED DEPENDENCIES
Informational

(0.0)
ACKNOWLEDGED

REDUNDANT STATE VALIDATION
Informational

(0.0)
SOLVED - 06/06/2023

FUNCTION CAN BE REPLACED BY MACRO
Informational

(0.0)
SOLVED - 06/06/2023

DEAD CODE
Informational

(0.0)
SOLVED - 06/06/2023

POSSIBLE OPTIMIZATIONS TO REDUCE
BINARY SIZE

Informational
(0.0)

SOLVED - 06/06/2023

UNNECESSARY PROMISE
Informational

(0.0)
SOLVED - 06/06/2023

TYPO IN SIMULATION TESTING CAUSES
FUZZ TESTS NOT TO EXECUTE PROPERLY

Informational
(0.0)

SOLVED - 05/11/2023

17

EX
EC

UT
IV

E
OV

ER
VI

EW

18

FINDINGS & TECH
DETAILS

4.1 (HAL-01) DENIAL OF SERVICE
CONDITION DUE TO STORAGE BLOATING -
MEDIUM (5.0)

Description:

It was observed that the MetaPool contract does not require a storage

deposit from users to cover fees associated with storing stNEAR balance.

Additionally, it is possible to send tokens to the previously unseen

user, in such a scenario, the contract will reserve storage for the newly

created user. The contract will be deducting NEAR to free balance to

cover the storage fees. However, if a contract will not have a sufficient

free balance, it will cause the transaction to fail and all subsequent

attempts at increasing the storage usage will fail until the contract’s

free balance is increased. Hence, it is possible for a malicious user to

create multiple accounts and use them as receivers for token transfers

with small value. Sufficient number of such transactions will bloat the

contract’s storage, leading to a Denial Of Service condition regarding

creating new balances, which will directly impact the staking process

- core functionality of the contract. It is worth noting that this

vulnerability does not impact token transfers among users who have already

saved balances, and the Denial Of Service condition can be reverted by

sending more NEAR tokens to the MetaPool contract.

Code Location:

Listing 1: metapool/src/internal.rs (Line 565)

553 pub fn internal_st_near_transfer(

554 &mut self ,

555 sender_id: &AccountId ,

556 receiver_id: &AccountId ,

557 amount: u128 ,

558) {

559 assert_ne!(

560 sender_id , receiver_id ,

561 "Sender and receiver should be different"

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

562);

563 assert!(amount > 0, "The amount should be a positive number");

564 let mut sender_acc = self.internal_get_account (& sender_id);

565 let mut receiver_acc = self.internal_get_account (& receiver_id)

ë ;

566 assert!(

567 amount <= sender_acc.stake_shares ,

568 "@{} not enough stNEAR balance {}",

569 sender_id ,

570 sender_acc.stake_shares

571);

572

573 let near_amount = self.amount_from_stake_shares(amount); //

ë amount is in stNEAR(aka shares), let 's compute how many nears that

ë is - for acc.staking_meter

574 sender_acc.sub_stake_shares(amount , near_amount);

575 receiver_acc.add_stake_shares(amount , near_amount);

576

577 self.internal_update_account (&sender_id , &sender_acc);

578 self.internal_update_account (& receiver_id , &receiver_acc);

579 }

Listing 2: metapool/src/internal.rs (Line 438)

438 pub(crate) fn internal_get_account (&self , account_id: &String) ->

ë Account {

439 self.accounts.get(account_id).unwrap_or_default ()

440 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:C/D:N/Y:N/R:P/S:U (5.0)

Proof Of Concept:

Please note that this Proof Of Concept uses an add_tokens_to function

that is not present in the actual contract. It was added as a helper to

create a state with balances to shorten the execution time of the test

case. Its definition is as follows:

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 3: metapool/src/lib.rs (Line 361)

361 pub fn add_tokens_to (&mut self , account_id: AccountId) {

362 let mut account = self.internal_get_account (& account_id);

363 account.add_stake_shares (10000000000000000000 , 100000000000);

364 self.internal_update_account (& account_id , &account);

365 }

Listing 4: src/halborn_testcases/storage_bloating.rs

39 #[tokio ::test]

40 async fn storage_bloating () -> anyhow ::Result <()> {

41 let user_count = 6;

42 let metapool_wasm = std::fs::read(LIQUID_STAKING_CONTRACT_PATH

ë)?;

43 let staking_pool_wasm = std::fs::read(

ë STAKING_POOL_CONTRACT_PATH)?;

44 let get_epoch_wasm = std::fs::read(GET_EPOCH_CONTRACT_PATH)?;

45

46 let worker = workspaces :: sandbox ().await ?;

47 let root_account = worker.root_account ()?;

48

49 let owner = root_account

50 .create_subaccount("contract -owner")

51 .initial_balance (199999999999999900000000000)

52 .transact ()

53 .await?

54 .into_result ()?;

55 let operator = root_account

56 .create_subaccount("operator")

57 .initial_balance (199999999999999900000000000)

58 .transact ()

59 .await?

60 .into_result ()?;

61 let treasury = root_account

62 .create_subaccount("treasury")

63 .initial_balance (199999999999999900000000000)

64 .transact ()

65 .await?

66 .into_result ()?;

67 let meta_token = root_account

68 .create_subaccount("meta_token_contract_account")

69 .initial_balance (199999999999999900000000000)

70 .transact ()

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

71 .await?

72 .into_result ()?;

73 let metapool = root_account

74 .create_subaccount("metapool")

75 .initial_balance (5000000000000000000000000) // 5 NEAR to

ë expedite execution

76 .transact ()

77 .await?

78 .into_result ()?;

79 let get_epoch_acc = root_account

80 .create_subaccount("get_epoch_acc")

81 .initial_balance (199999999999999900000000000)

82 .transact ()

83 .await?

84 .into_result ()?;

85

86 let mut user_accounts = Vec:: with_capacity(user_count);

87 for n in 0.. user_count {

88 let this_user_account = root_account

89 .create_subaccount (& user_account_name(n))

90 .initial_balance (19999999999999990000000000000)

91 .transact ()

92 .await?

93 .into_result ()?;

94 user_accounts.push(this_user_account);

95 }

96

97 let get_epoch_contract = get_epoch_acc.deploy (& get_epoch_wasm)

ë .await ?. into_result ()?;

98 get_epoch_contract

99 .call("new")

100 .args_json(json! ({}))

101 .transact ()

102 .await?

103 .into_result ()?;

104

105 let metapool_contract = metapool.deploy (& metapool_wasm).await

ë ?. into_result ()?;

106 metapool_contract

107 .call("new")

108 .args_json(json! ({

109 "owner_account_id": owner.id(),

110 "treasury_account_id": treasury.id(),

111 "operator_account_id": operator.id(),

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

112 "meta_token_account_id": meta_token.id(),

113 }))

114 .transact ()

115 .await?

116 .into_result ()?;

117

118 let mut sp_contracts = Vec:: with_capacity (4);

119 let mut set_staking_pools_arg = Vec:: with_capacity (4);

120 let weights_vec: Vec <u8> = vec![15, 16, 20, 49];

121 for n in 0..=3 {

122 let staking_pool_n = root_account

123 .create_subaccount (& sp_contract_name(n))

124 .initial_balance (19999999999999990000000000000)

125 .transact ()

126 .await?

127 .into_result ()?;

128 let staking_pool_contract_n = staking_pool_n

129 .deploy (& staking_pool_wasm)

130 .await?

131 .into_result ()?;

132 staking_pool_contract_n.call("new").args_json(json! ({

133 "owner_id": owner.id(),

134 "stake_public_key": "

ë Di8H4S8HSwSdwGABTGfKcxf1HaVzWSUKVH1mYQgwHCWb",

135 "reward_fee_fraction": RewardFeeFraction {numerator:

ë 5, denominator: 100}

136 }));

137

138 owner

139 .call(metapool_contract.id(), "add_staking_pool")

140 .args_json(json! ({

141 "account_id": staking_pool_contract_n.id(),

142 }))

143 .transact ()

144 .await?

145 .into_result ()?;

146

147 let this_arg = StakingPoolArgItem {

148 account_id: staking_pool_contract_n.id().clone (),

149 weight_basis_points: weights_vec[n] as u16 * 100,

150 };

151 set_staking_pools_arg.push(this_arg);

152 sp_contracts.push(staking_pool_contract_n);

153 }

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

154

155 owner

156 .call(metapool_contract.id(), "set_staking_pools")

157 .args_json(json! ({ "list": set_staking_pools_arg }))

158 .deposit (1)

159 .transact ()

160 .await?

161 .into_result ()?;

162

163 // Note: This function was added as a helper to shorten the

ë execution of the test case

164 // It is not present in the actual contract

165 user_accounts [0]

166 .call(metapool_contract.id(), "add_tokens_to")

167 .args_json(json! ({

168 "account_id": user_accounts [0].id(),

169 }))

170 .transact ()

171 .await?

172 .into_result ()?;

173

174 user_accounts [0]

175 .call(metapool_contract.id(), "add_tokens_to")

176 .args_json(json! ({

177 "account_id": user_accounts [1].id(),

178 }))

179 .transact ()

180 .await?

181 .into_result ()?;

182

183 // Storage bloating via many small transfers

184 let mut dummy_user_index = 0;

185 println!("Starting vulnerable scenario ...");

186 loop {

187 let this_user_account_id = format!("dummyuser {}",

ë dummy_user_index);

188

189 user_accounts [0]

190 .call(metapool_contract.id(), "ft_transfer")

191 .args_json(json! ({

192 "receiver_id": this_user_account_id ,

193 "amount": "1",

194 "memo": None::<String >

195 }))

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

196 .deposit (1)

197 .transact ()

198 .await?

199 .into_result ()?;

200

201 dummy_user_index += 1;

202 }

203

204 Ok(())

205 }

Recommendation:

It is recommended to require a storage deposit from new users so that the

storage fees will always be covered. Alternatively, if such a mechanism

is not possible to be implemented for business reasons, the balance

of the contract should be constantly monitored, and NEAR tokens should

be automatically deposited to the contract once free balance reaches a

previously defined threshold.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit f11ba493 by imple-

menting a storage fee mechanism.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/liquid-staking-contract/commit/f11ba4933914d7d1c443344a5961e3fd411a5212

4.2 (HAL-02) USAGE OF OUTDATED
DEPENDENCIES - INFORMATIONAL (0.0)

Description:

It was observed that dependencies defined in Cargo.toml file for MetaPool

contract are not using their latest versions. Namely:

• near-sdk

• near-contract-standards

• uint

• quickcheck

• quickcheck_macros

• env_logger

Code Location:

Listing 5: metapool/Cargo.toml (Lines 16,17,24,28,29,31)

11 [dependencies]

12

13 #near -sdk = "2.0.1"

14 #near -sdk = { git = "https :// github.com/Narwallets/near -sdk -rs" }

15

16 near -sdk = { git = "https :// github.com/near/near -sdk -rs.git", tag=

ë "3.1.0" }

17 near -contract -standards = { git = "https :// github.com/near/near -

ë sdk -rs.git", tag="3.1.0" }

18

19

20 #near -sdk = { git = "https :// github.com/near/near -sdk -rs", tag="

ë 3.0.1" }

21 #near -contract -standards = { git = "https :// github.com/near/near -

ë sdk -rs.git", tag="3.0.1" }

22

23

24 uint = { version = "0.8.3", default -features = false }

25

26 [dev -dependencies]

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

27 lazy_static = "1.4.0"

28 quickcheck = "0.9"

29 quickcheck_macros = "0.9"

30 log = "0.4"

31 env_logger = { version = "0.7.1", default -features = false }

32

33 rand = "*"

34 rand_pcg = "*"

35

36 # near -crypto = { git = "https :// github.com/nearprotocol/nearcore.

ë git" }

37 # near -primitives = { git = "https :// github.com/nearprotocol/

ë nearcore.git" }

38

39 near -sdk -sim = { git = "https :// github.com/near/near -sdk -rs", tag=

ë "3.1.0" }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to update the dependencies to the latest available

stable versions.

Remediation Plan:

ACKNOWLEDGED: The MetaPool team acknowledged this issue, and decided not

to change the currently used version due to significant changes in the

SDK API.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.3 (HAL-03) REDUNDANT STATE
VALIDATION - INFORMATIONAL (0.0)

Description:

It was observed that the MetaPool contract implements a manual assertion

in the new function that checks if the contract’s state already ex-

ists. However, the new function is also marked with #[init] macro which

implements this behavior by default, making manual assertion redundant.

Code Location:

Listing 6: metapool/src/lib.rs (Line 289)

282 #[init]

283 pub fn new(

284 owner_account_id: AccountId ,

285 treasury_account_id: AccountId ,

286 operator_account_id: AccountId ,

287 meta_token_account_id: AccountId ,

288) -> Self {

289 assert!(!env:: state_exists (), "The contract is already

ë initialized");

290

291 let result = Self {

292 owner_account_id ,

293 contract_busy: false ,

294 operator_account_id ,

295 treasury_account_id ,

296 contract_account_balance: 0,

297 web_app_url: Some(String ::from(DEFAULT_WEB_APP_URL)),

298 auditor_account_id: Some(String ::from(

ë DEFAULT_AUDITOR_ACCOUNT_ID)),

299 operator_rewards_fee_basis_points:

ë DEFAULT_OPERATOR_REWARDS_FEE_BASIS_POINTS ,

300 operator_swap_cut_basis_points:

ë DEFAULT_OPERATOR_SWAP_CUT_BASIS_POINTS ,

301 treasury_swap_cut_basis_points:

ë DEFAULT_TREASURY_SWAP_CUT_BASIS_POINTS ,

302 staking_paused: false ,

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

303 total_available: 0,

304 total_for_staking: 0,

305 total_actually_staked: 0,

306 total_unstaked_and_waiting: 0,

307 retrieved_for_unstake_claims: 0,

308 total_unstake_claims: 0,

309 epoch_stake_orders: 0,

310 epoch_unstake_orders: 0,

311 epoch_last_clearing: 0,

312 accumulated_staked_rewards: 0,

313 total_stake_shares: 0,

314 total_meta: 0,

315 accounts: UnorderedMap ::new(b"A".to_vec ()),

316 loan_requests: LookupMap ::new(b"L".to_vec ()),

317 nslp_liquidity_target: 10_000 * NEAR ,

318 nslp_max_discount_basis_points: 180, //1.8%

319 nslp_min_discount_basis_points: 25, // 0.25%

320 min_deposit_amount: 10 * NEAR ,

321 ///for each stNEAR paid as discount , reward stNEAR sellers

ë with META. initial 5x, default :1x. reward META = discounted *

ë mult_pct / 100

322 stnear_sell_meta_mult_pct: 50, //5x

323 ///for each stNEAR paid staking reward , reward stNEAR

ë holders with META. initial 10x, default :5x. reward META = rewards

ë * mult_pct / 100

324 staker_meta_mult_pct: 5000, //500x

325 ///for each stNEAR paid as discount , reward LPs with META.

ë initial 50x, default :20x. reward META = fee * mult_pct / 100

326 lp_provider_meta_mult_pct: 200, //20x

327 staking_pools: Vec::new(),

328 meta_token_account_id ,

329 est_meta_rewards_stakers: 0,

330 est_meta_rewards_lu: 0,

331 est_meta_rewards_lp: 0,

332 max_meta_rewards_stakers: 1_000_000 * ONE_NEAR ,

333 max_meta_rewards_lu: 50_000 * ONE_NEAR ,

334 max_meta_rewards_lp: 100 _000 * ONE_NEAR ,

335 unstaked_for_rebalance: 0,

336 unstake_for_rebalance_cap_bp: 100,

337 };

338 //all key accounts must be different

339 result.assert_key_accounts_are_different ();

340 return result;

341 }

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to remove the redundant code.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit 52bf32f8 by removing

the redundant code.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/liquid-staking-contract/commit/52bf32f8d5159cb93e6e7c47ebcd225e18df143c

4.4 (HAL-04) FUNCTION CAN BE
REPLACED BY MACRO - INFORMATIONAL
(0.0)

Description:

It was observed that the MetaPool contract implements the

assert_callback_calling() function that verifies if the prede-

cessor AccountId equals the current AccountId. Such functionality

can also be achieved by using #[private] macro, which will reduce the

codebase and make the code more readable.

Code Location:

Listing 7: metapool/src/utils.rs

33 pub fn assert_callback_calling () {

34 assert_eq!(env:: predecessor_account_id (), env::

ë current_account_id ());

35 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to use the #[private] macro instead of manual assertions.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit 52bf32f8 by using

the #[private] macro over the assert_callback_calling function.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/liquid-staking-contract/commit/52bf32f8d5159cb93e6e7c47ebcd225e18df143c

4.5 (HAL-05) DEAD CODE -
INFORMATIONAL (0.0)

Description:

It was observed that code inside validator_loans.rs file is mostly com-

mented out, leaving one struct, which is used in the MetaPool contract’s

storage. However, it was observed that no logic is associated with that

field, making it not necessary in the contract.

Code Location:

Listing 8: metapool/src/validator_loans.rs (Lines 3-6)

3 pub struct VLoanRequest {

4 // total requested

5 pub amount_requested: u128 ,

6 }

7

8 /*

9 use crate ::*;

10 use near_sdk :: serde ::{ Deserialize , Serialize };

11

12 pub use crate :: types ::*;

13 pub use crate :: utils ::*;

14

15 //------------------------

16 // Validator Loan Req Status

17 //------------------------

18 pub const DRAFT: u8 = 0;

19 pub const ACTIVE: u8 = 1;

20 pub const REJECTED: u8 = 2;

21 pub const APPROVED: u8 = 3;

22 pub const FEE_PAID: u8 = 4;

23 pub const EXECUTING: u8 = 5;

24 pub const COMPLETED: u8 = 6;

25

26 const ACTIVATION_FEE: u128 = 5 * NEAR;

27 const MIN_REQUEST: u128 = 10 * K_NEAR;

28

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

29 (...)

Listing 9: metapool/src/lib.rs

101 #[near_bindgen]

102 #[derive(BorshDeserialize , BorshSerialize , PanicOnDefault)]

103 pub struct MetaPool {

104 (...)

105

106 // validator loan request

107 // action on audit suggestions , this field is not used. No

ë need for this to be on the main contract

108 pub loan_requests: LookupMap <AccountId , VLoanRequest >,

109

110 (...)

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to remove the loan_requests field from the contract’s

storage and delete the validator_loans.rs file from the repository.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit 52bf32f8 by removing

the unnecessary files.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/liquid-staking-contract/commit/52bf32f8d5159cb93e6e7c47ebcd225e18df143c

4.6 (HAL-06) POSSIBLE OPTIMIZATIONS
TO REDUCE BINARY SIZE -
INFORMATIONAL (0.0)

Description:

Contract size directly corresponds to the costs associated with its

operation, mainly - the deployment. Although many of the strategies aimed

at reducing the compiled binary size achieve this goal at the expense

of code readability, there are some measures that could be implemented

without such sacrifices.

It was observed that Cargo.toml file of MetaPool contract specified

the crate-type as both cdylib and rlib, however usually only cdylib is

necessary. Additionally, the release compilation profile used opt-level

option set to s. Specifying the crate-type to only cdylib and changing

the opt-level to z resulted in a wasm binary size reduction of 14%.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to change the crate-type parameter to cdylib and opt-

level to z in Cargo.toml files to reduce the size of compiled binary.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit 52bf32f8 by changing

the crate-type parameter to contain only cdylib value and by setting the

opt-level to a value of z.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/liquid-staking-contract/commit/52bf32f8d5159cb93e6e7c47ebcd225e18df143c

4.7 (HAL-07) UNNECESSARY PROMISE -
INFORMATIONAL (0.0)

Description:

It was observed that MetaPool contract defines a set_reward_fee function

that is responsible for setting operator’s rewards. This function is

set as payable; however, it returns all the attached deposit, except 1

yocto NEAR. As such, it is not necessary to schedule that promise, and

simply change the implementation to use assert_one_yocto function, which

will reduce the code complexity and cost of executing that set_reward_fee

function.

Code Location:

Listing 10: metapool/src/lib.rs (Lines 488-490)

479 #[payable]

480 pub fn set_reward_fee (&mut self , basis_points: u16) {

481 self.assert_owner_calling ();

482 assert!(env:: attached_deposit () > 0);

483 assert!(basis_points < 1000); // less than 10%

484 //

ë DEVELOPERS_REWARDS_FEE_BASIS_POINTS is included

485 self.operator_rewards_fee_basis_points =

486 basis_points.saturating_sub(

ë DEVELOPERS_REWARDS_FEE_BASIS_POINTS);

487 // return the deposit (except 1 yocto)

488 if env:: attached_deposit () > 1 {

489 Promise ::new(env:: predecessor_account_id ()).transfer(env::

ë attached_deposit ());

490 }

491 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to remove balance transfer from the set_reward_fee

function and introduce an assert_one_yocto function to make sure that the

attached deposit is equal to exactly 1 yocto NEAR.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit 52bf32f8 by sim-

plifying the implementation to require one yocto of attached deposit.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/liquid-staking-contract/commit/52bf32f8d5159cb93e6e7c47ebcd225e18df143c

4.8 (HAL-08) TYPO IN SIMULATION
TESTING CAUSES FUZZ TESTS NOT TO
EXECUTE PROPERLY - INFORMATIONAL
(0.0)

Description:

The MetaPool contract uses a near-sdk-sim crate to simulate the contract’s

operation in the blockchain environment. In order to identify bugs,

fuzz-based tests are implemented. It was observed that they are not

always completely successful. It was identified that the root cause of

this behavior was a typo in the parameter name. Namely, the Action::

LiquidUnstake branch improperly named the parameter stnear_to_burn.

Code Location:

Listing 11: metapool/tests/sim/simulation_fuzzy.rs (Line 131)

72 pub fn step_random_action(

73 sim: &Simulation ,

74 acc: &UserAccount ,

75 action: Action ,

76 amount_near: u64 ,

77 pre: &State ,

78) -> Result <StateAndDiff , String > {

79 println!("step_random_action {:?} {}", action , amount_near);

80

81 return match action {

82 Action :: Stake => step_call(

83 &sim ,

84 &acc ,

85 "deposit_and_stake",

86 json! ({}),

87 50 * TGAS ,

88 amount_near as u128 * NEAR ,

89 &pre ,

90),

91 Action :: AddLiquidity => step_call(

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

92 &sim ,

93 &acc ,

94 "nslp_add_liquidity",

95 json! ({}),

96 200 * TGAS ,

97 amount_near as u128 * NEAR ,

98 &pre ,

99),

100 Action :: RemoveLiquidity => step_call(

101 &sim ,

102 &acc ,

103 "nslp_remove_liquidity",

104 json! ({ "amount": ntoU128(amount_near) }),

105 200 * TGAS ,

106 NO_DEPOSIT ,

107 &pre ,

108),

109 Action :: DelayedUnstake => step_call(

110 &sim ,

111 &acc ,

112 "unstake",

113 json! ({ "amount": ntoU128(amount_near) }),

114 100 * TGAS ,

115 NO_DEPOSIT ,

116 &pre ,

117),

118 Action :: DUWithdraw => step_call(

119 &sim ,

120 &acc ,

121 "withdraw",

122 json! ({ "amount": ntoU128(amount_near) }),

123 50 * TGAS ,

124 NO_DEPOSIT ,

125 &pre ,

126),

127 Action :: LiquidUnstake => step_call(

128 &sim ,

129 &acc ,

130 "liquid_unstake",

131 json! ({"stnear_to_burn": ntoU128(amount_near), "

ë min_expected_near": ntoU128(amount_near *95/100) }),

132 50 * TGAS ,

133 NO_DEPOSIT ,

134 &pre ,

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

135),

136 Action :: BotDistributes => bot_distributes (&sim , &pre),

137 Action :: BotEndOfEpochClearing => bot_end_of_epoch_clearing

ë (&sim , &pre),

138 Action :: BotRetrieveFunds => bot_retrieve (&sim , &pre),

139 Action :: BotPingRewards => bot_ping_rewards (&sim , &pre),

140 Action :: StartRebalanceUnstake => bot_rebalance_unstake (&

ë sim , &pre),

141 Action :: ChangePoolsWeight => bot_change_pools_weight (&sim ,

ë &pre),

142 Action :: LastAction => panic!("invalid action"),

143 };

144 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to change the stnear_to_burn JSON key to the

st_near_to_burn as defined in the liquid_unstake function.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit f11ba493 by cor-

recting the typo.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/liquid-staking-contract/commit/f11ba4933914d7d1c443344a5961e3fd411a5212

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	BVSS
	Proof Of Concept
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

