// HALBORN

MetaPool -
Katherine
Fundraising and
Bond Market

NEAR Smart Contract Security
Audit

Prepared by: Halborn
Date of Engagement: April 10th, 2023 - May 12th, 2023
Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 6
1 EXECUTIVE OVERVIEW 7
1.7 INTRODUCTION 8
1.2 AUDIT SUMMARY 8
1.3 TEST APPROACH & METHODOLOGY 10
2 RISK METHODOLOGY 11
2.1 EXPLOITABILITY 12
2.2 IMPACT 13
2.3 SEVERITY COEFFICIENT 15
2.4 SCOPE 17
3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 18
4 FINDINGS & TECH DETAILS 19

4.1 (HAL-01) FUNDS LOCKING DUE TO UNAUTHORIZED BOND MERGING -

21
Description 21
Code Location 22
BVSS 22
Proof Of Concept 22
Recommendation 32
Remediation Plan 32

4.2 (HAL-02) LOSS OF REWARDS DUE TO KICKSTARTER UPDATE - LOW(2.0)
33

Description 33

Code Location 33

4.3

4.4

4.5

4.6

BVSS 35
Recommendation 35
Remediation Plan 36

(HAL-03) DENIAL OF SERVICE CONDITION DUE TO STORAGE BLOATING -

INFORMATIONAL (@.5) 37
Description 37
Code Location 37
BVSS 38
Recommendation 38
Remediation Plan 39

(HAL-04) REDUNDANT STATE VALIDATION - INFORMATIONAL(0.0) 40

Description 40
Code Location 40
BVSS 41
Recommendation 41
Remediation Plan 41
(HAL-05) REDUNDANT MANUAL CALLBACK ASSERTION - INFORMA-
TIONAL(Q.0) 42
Description 42
Code Location 42
BVSS 44
Recommendation 44
Remediation Plan 44
(HAL-06) NOT NECESSARY MACRO USAGE - INFORMATIONAL (0.0) 45
Description 45
Code Location)

BVSS 49

4.7

4.8

4.9

4.10

Recommendation

Remediation Plan

(HAL-@7) REDUNDANT FUNCTION - INFORMATIONAL (0.0)
Description

Code Location

BVSS

Recommendation

Remediation Plan

(HAL-@8) DEAD CODE - INFORMATIONAL (0.0)
Description

BVSS

Recommendation

Remediation Plan

(HAL-@9) JAVASCRIPT INCOMPATIBLE TYPE - INFORMATIONAL(©.0)
Description

Code Location

BVSS

Recommendation

Remediation Plan

49

49

50

50

50

50

50

51

52

52

52

52

52

53

53

53

54

54

54

(HAL-1@) POSSIBLE OPTIMIZATIONS TO REDUCE BINARY SIZE - INFOR-

MATIONAL (©.0)
Description

Code Location
BVSS
Recommendation

Remediation Plan

55

55

55

56

56

56

4.11 (HAL-11) OUTDATED DEPENDENCIES - INFORMATIONAL(©.0)
Description

Code Location
BVSS
Recommendation

Remediation Plan

57

57

57

57

57

57

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR
0.1 Document Creation 05/11/2023 Michal Bajor
0.2 Document Updates 05/11/2023 Michal Bajor
0.3 Draft Version URYARWILYE Michal Bajor
0.4 Draft Review 05/12/2023 Alpcan Onaran
0.5 Draft Review 05/13/2023 Gabi Urrutia
1.0 Remediation Plan 06/07/2023 Michal Bajor
1.1 Remediation Plan Review | 06/07/2023 Alpcan Onaran
1.2 Remediation Plan Review | 06/07/2023 Piotr Cielas
1.3 Remediation Plan Review | ©6/09/2023 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Piotr Cielas Halborn Piotr.Cielas@halborn.com
Alpcan Onaran Halborn Alpcan.Onaran@halborn.com
Michal Bajor Halborn Michal.Bajor@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Alpcan.Onaran@halborn.com
mailto:Michal.Bajor@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

MetaPool engaged the services of Halborn to execute a security audit on
their smart contracts. This examination of their systems transpired over
a month-long period, commencing on the 10th of April 2023, and culminating
on the 12th of May 2023.

The scope of the security assessment was defined to encompass only the
smart contracts which had been provided in the katherine-fundraising
repository. The exact versions of the smart contracts that were included
in this assessment were determined by certain commit hashes, the specifics
of which are elaborately laid out in the Scope section of this report.
This level of detail ensures clarity about the exact content and versions
of the contracts that were scrutinized during the audit.

The client’s project, Katherine, is a sophisticated crowd fundraising
initiative. Its unique selling proposition lies in its ingenious lever-
aging of the yield produced by staking NEAR tokens in the Meta Pool. This
method allows for the generation of funds in a decentralized, secure, and

transparent manner.

The system’s design incorporates the Bond Market and Bond Operator con-
tracts, which operate in tandem to create a functional and efficient
market for bonds associated with funding. This bond market serves as a
crucial element of the Katherine project, providing an additional layer
of financial sophistication and flexibility. It allows the contributors
to the project to not only support a cause they believe in, but also
potentially reap a financial return on their investment.

1.2 AUDIT SUMMARY

The team at Halborn was provided 4 weeks for the engagement and as-
signed one full-time security engineer to audit the security of the
smart contracts in scope. The security engineer is a blockchain and
smart-contract security expert with advanced penetration testing and
smart-contract hacking skills, and deep knowledge of multiple blockchain

https://github.com/Narwallets/katherine-fundraising

EXECUTIVE OVERVIEW

protocols.

The purpose of this audit is to:

®* Identify potential security issues within the smart contracts
® Ensure all functions are running as intended

In summary, Halborn identified some improvements to reduce the likelihood
and impact of risks, which has been successfully addressed by MetaPool .
The main ones are the following:

FUNDS LOCKING DUE TO UNAUTHORIZED BOND MERGING

It was observed that anyone could merge bonds that are valid for such an
operation. Although this action does not change the underlying value,
the issue originates from the fact that one of the bonds might have been
put on sale prior to merging. In such a scenario, if the auction sale
was successful, however, a malicious user will merge that bond into a
different one, it will be impossible to change its ownership and the
funds sent as an auction bid will be locked.

MetaPool **successfully** remediated this issue by introducing a verifi-
cation mechanism that prevents merging bonds that are on sale. Addition-
ally, only the owner of both bonds can merge them.

LOSS OF REWARDS DUE TO KICKSTARTER UPDATE

It was observed that the kick-starter could be updated prior to its
funding time frame. Doing so results in zeroing the variable responsible
for representing project tokens that were sent as a reward for supporters.
If some project tokens were sent as rewards to supporters, they will
effectively be lost even if the AccountId associated with the token
contract remained the same.

MetaPool #**successfully** remediated this issue by deprecating the
kickstarter update function.

EXECUTIVE OVERVIEW

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated
security testing to balance efficiency, timeliness, practicality, and
accuracy in regard to the scope of the smart contract audit. While
manual testing is recommended to uncover flaws in logic, process, and
implementation; automated testing techniques help enhance coverage of
smart contracts and can quickly identify items that do not follow security
best practices.

The following phases and associated tools were used throughout the term
of the audit:

® Research into the architecture, purpose, and use of the platform.

® Smart contract manual code review and walkthrough to identify any
logic issue.

®* Mapping out possible attack vectors

Thorough assessment of safety and usage of critical Rust variables
and functions in scope that could lead to arithmetic vulnerabilities.

Finding unsafe Rust code usage (cargo-geiger)

® On chain testing of core functions(near-cli, NEAR-API-JS, workspaces

-rs)
®* Deployment of Smart Contracts (kurtosis, near localnet)

®* Scanning dependencies for known vulnerabilities (cargo audit).

10

EXECUTIVE OVERVIEW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two
sets of Metrics and a Severity Coefficient. This system is inspired by
the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability
captures the ease and technical means by which vulnerabilities can be
exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of
the ranking with two factors: Reversibility and Scope. These capture the
impact of the vulnerability on the environment as well as the number of
users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and
10 corresponding to the highest security risk. This provides an objective
and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-
nerabilities based on their level of risk to address the most critical
issues in a timely manner.

11

EXECUTIVE OVERVIEW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker
relative to sending a single transaction on the relevant blockchain.
Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in
order to exploit the vulnerability. Includes but is not limited to macro
situation, available third-party liquidity and regulatory challenges.

Metrics:
Exploitability Metric . :
Metric Value Numerical Value
(mg)
L Arbitrary (AO:A) 1
Attack Origin (AO) o
Specific (AO:S) 0.2
Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33
Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability /£ is calculated using the following formula:

E = n Me

12

EXECUTIVE OVERVIEW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources
managed by the contract due to a successfully exploited vulnerability.
Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-
ity. Integrity refers to the trustworthiness and veracity of data stored
and/or processed on-chain. Integrity impact directly affecting Deposit
or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-
sulting from a successfully exploited vulnerability. This metric refers
to smart contract features and functionality, not state. Availability
impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either
users or owners.

13

EXECUTIVE OVERVIEW

Metrics:

Impact Metric

Metric Value

Numerical Value

(mp)

None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

None (I:N) 0
Low (I:L) 0.25
Integrity (I) Medium (I:M) 0.5
High (I:H) .75

Critical (I:C) 1

None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75

Critical 1

None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75

Critical (D:C) 1

None (Y:N) 0
Low (Y:L) 0.25
Yield (Y) Medium: (Y:M) 0.5
High: (Y:H) 0.75

Critical (Y:H)

Impact / is calculated using the following formula:

I = max(my) +

> my; — max(my)

4

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be
reversed. For upgradeable contracts, assume the contract private key is
available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-
sources in other contracts.

EXECUTIVE OVERVIEW

Coefficient _ :
©) Coefficient Value Numerical Value
None (R:N) 1
Reversibility (r) Partial (R:P) 0.5
Full (R:F) 0.25
Changed (S:C) 1.25

Scope (s)

Unchanged (S:U)

Severity Coefficient (' is obtained by the following product:

C=rs

15

EXECUTIVE OVERVIEW

The Vulnerability Severity Score S is obtained by:

S = min(10, EIC = 10)

The score is rounded up to 1 decimal places.

Severity Score Value Range
Critical 9 -10
High 7 -8.9
4.5 - 6.9
2 - 4.4
0 -1.9

16

EXECUTIVE OVERVIEW

2.4 SCOPE

Code repositories:

1. Katherine Fundraising

Repository: katherine-fundraising
® Commit ID: bfc38054194ad37c531c532645edfd5a7bde3933
®* Smart Contracts in scope:

1. Katherine Fundraising (katherine-fundraising/contracts/
katherine-fundraising-contract/)

2. Bond Operator (katherine-fundraising/contracts/bond-operator-
contract)

3. Bond Market (katherine-fundraising/contracts/bond-market-

contract)

Out-of-scope: External libraries and financial related attacks.

17

https://github.com/Narwallets/katherine-fundraising/tree/halborn
https://github.com/Narwallets/katherine-fundraising/tree/bfc38054194ad37c531c532645edfd5a7bde3933

EXECUTIVE OVERVIEW

3. ASSESSMENT SUMMARY & FINDINGS

OVERVIEW

CRITICAL

HIGH

l

18

EXECUTIVE OVERVIEW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

FUNDS LOCKING DUE TO UNAUTHORIZED

BOND MERGING Critical (9.4)

LOSS OF REWARDS DUE TO KICKSTARTER
UPDATE

DENIAL OF SERVICE CONDITION DUE TO
STORAGE BLOATING

REDUNDANT STATE VALIDATION

REDUNDANT MANUAL CALLBACK ASSERTION

NOT NECESSARY MACRO USAGE

REDUNDANT FUNCTION

DEAD CODE

JAVASCRIPT INCOMPATIBLE TYPE

POSSIBLE OPTIMIZATIONS TO REDUCE
BINARY SIZE

OUTDATED DEPENDENCIES ACKNOWLEDGED

19

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

4.1 (HAL-01) FUNDS LOCKING DUE TO
UNAUTHORIZED BOND MERGING -

Description:

During our analysis, we identified an issue concerning the merge_bonds
function within the system. This function currently lacks any form of
authorization, which leaves it open to manipulation by any user, including
those with malicious intent. This absence of secure access control allows
users to merge any valid bonds, despite the possible implications to the
system’s stability and security.

One such implication is the potential for funds to be indefinitely locked
within the BondMarket contract. This problematic scenario occurs when a
bond, which is listed for auction sale within the BondMarket contract,
is successfully auctioned off. In this case, the winning bidder should
ideally be able to claim ownership of the bond via the pull_sale_bond
function, which transfers ownership through a cross-contract call to the
BondOperator contract.

However, should this cross-contract call fail for any reason, the system
reverts to a state where the winning bidder is still recognized as the
auction winner through the process_auction_ends_callback function. This
state of affairs leads to the funds remaining inaccessible for withdrawal
as long as the system perceives that user as the auction winner.

The unrestricted access to the merge_bonds function adds another layer of
complexity to this issue. A malicious user could manipulate this function,
merging a bond currently on sale into another bond, effectively erasing
the original bond’s identifier data. The deletion of this crucial data
in turn results in the persistent failure of the cross-contract call
initiated by the pull_sale_bond function.

This vulnerability effectively causes the funds committed by the win-
ning bidder to be indefinitely locked within the BondMarket contract.

21

FINDINGS & TECH DETAILS

Moreover, it obstructs the proper transfer of bond ownership, creating
potential liabilities and hindering the smooth operation of the system.

Code Location:

Down below is a code snippet from the merge_bonds function:

371 pub fn merge_bonds (&mut self, bond_id: BondId, other_id: BondId) ({
372 let bond = self.internal_get_bond(bond_id);

373 let mut other = self.internal_get_bond(other_id);
374 let new_bond = bond.merge (&mut other);

375

376 // Remove other bond.

377 self.internal_bond_drop (&other);

378

379 // Replace with merged bond.

380 self.bonds.insert (&bond_id, &new_bond);

381 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:H/Y:N/R:N/S:C (9.4)

Proof Of Concept:

142 #[tokio::test]

143 async fn test_merge_bond_on_sale() -> anyhow::Result<()> {
144 let worker = workspaces::sandbox().await?;

145

146 let root_account = worker.root_account()?;

147

148 let halborn_account = root_account

149 .create_subaccount ("halborn")

150 .initial_balance (199999999999999900000000000)
151 .transact ()

152 .await?

22

FINDINGS & TECH DETAILS

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

let

let

let

let

let

let

.into_result()?;

katherine_owner_account = root_account
.create_subaccount ("katowner")

.initial _balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

kickstarter_owner_account = root_account
.create_subaccount ("kickowner")

.initial _balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

metapool_account = root_account
.create_subaccount ("metapool")
cinitial_balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

katherine_account = root_account
.create_subaccount ("katherine")
.initial_balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

supporter_account = root_account
.create_subaccount ("supporter")
.initial_balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

buyer_account = root_account
.create_subaccount ("buyer")

.initial _balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

23

FINDINGS & TECH DETAILS

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

let

let

let

let

let

bond_market_owner_account = root_account
.create_subaccount ("bondmarket -owner")
.initial _balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

bond_operator_owner = root_account
.create_subaccount ("bondoperator -owner")
.initial _balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

bond_market_operator_account = root_account
.create_subaccount ("bondoperator”)
.initial_balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

bond_market_account = root_account
.create_subaccount ("bondmarket")

.initial _balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

ptoken_account = root_account
.create_subaccount ("ptoken")

.initial_balance (199999999999999900000000000)
.transact ()

.await?

.into_result()?;

// deploying contracts

let

metapool_contract = deploy_meta_pool (&

L, katherine_owner_account, &metapool_account).await?;

234
235

Ly
236
237
238

let

let

ptoken_contract = deploy_ptoken(&katherine_owner_account,

&ptoken_account).await?;

bond_market_contract = deploy_bond_market(
&bond_market_owner_account,

&bond_market_account,

24

FINDINGS & TECH DETAILS

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272
273

274

275

276

277

metapool_contract.id(),

)

.await?;

let bond_operator_contract = deploy_operator(

&bond_operator_owner,
&bond_market_operator_account,
&metapool_account,
&bond_market_contract,
&bond_market_owner_account,

)

.await?;

let current_epoch: EpochMillis = metapool_contract

.call("get_epoch")
.args_json(json! ({}))
.view()

.await?

.json()?;

println! ("CURRENT EPOCH: {}", current_epoch);

mint_ptokens(
&ptoken_contract,
&katherine_owner_account,
vec![
//&katherine_owner_account,
&katherine_account,
&supporter_account,
&buyer_account,
1,
)

.await?;

let now = Now::new_from_epoch_millis(metapool_contract.call(”

get_epoch”).view().await?.json()?);

= now.to_epoch_millis

let stnear_freeze_timestamp: EpochMillis
O

let stnear_vault_maturity_datetime: EpochMillis = now.
increment_min (40).to_epoch_millis();

let ptoken_start_linear_release_datetime:
increment_min(15).to_epoch_millis();

EpochMillis = now.

let ptoken_vault_maturity_datetime: EpochMillis = now.

increment_min (40).to_epoch_millis();

25

FINDINGS & TECH DETAILS

278
279

L,
280
281
282
283
284
285
286
287
288
289
290
291

L,
292

N
PAK]

N
294

N
295
296

L,
297

N
298

L,
299
300
301
302
303
304
305
306
307
308
309

N
310

L,

// Import testing bonds

let content = fs::read_to_string (BONDS_FILEPATH).expect("Error
reading bond file");

let bonds_json = json_reader::parse(&content)?;

let bonds = bonds_json["bonds”].clone();

// Vault parameters
let vault_id = String::from("TEST_vault_id");
let stnear_price_at_freeze: U128 = metapool_contract
.call("get_st_near_price")
.view()
.await?
.json()?;

let initial_stnear_balance: U128
calculate_stnear_balance (bonds.clone(),
stnear_price_at_freeze.clone());
let initial_ptoken_balance: U128 = calculate_ptoken_balance(
bonds.clone());

let ptoken_contract_address: AccountId = ptoken_contract.id().
clone ();

let interest_beneficiary_until_unfreeze: AccountId =
kickstarter_owner_account.id().clone();

let interest_beneficiary_near_claimed: U128 = U128::from(0Q);

let bond_owners_near_claimed: U128 = calculate_near_claimed(
bonds.clone());

let bond_owners_ptoken_claimed: U128 =
calculate_ptoken_claimed(bonds.clone());

let vault_owner_id: AccountId = katherine_owner_account.id().
clone();
// Create a vault
let res = bond_operator_owner
.call(bond_operator_contract.id(), "create_vault")
.args_json(serde_json:: json! ({
"vault_id": vault_id,
"stnear_price_at_freeze": stnear_price_at_freeze,
"initial_stnear_balance”: initial_stnear_balance,
"initial_ptoken_balance”: initial_ptoken_balance,
"ptoken_contract_address”: ptoken_contract_address,
"stnear_freeze_timestamp”: U64::from(
stnear_freeze_timestamp),

"interest_beneficiary_until_unfreeze”:

interest_beneficiary_until_unfreeze,

26

FINDINGS & TECH DETAILS

311 "interest_beneficiary_near_claimed”:
L, interest_beneficiary_near_claimed,

312 "bond_owners_near_claimed”: bond_owners_near_claimed,

313 "bond_owners_ptoken_claimed”:
L, bond_owners_ptoken_claimed,

314 "stnear_vault_maturity_datetime”: U64::from(
L, stnear_vault_maturity_datetime),

315 "ptoken_start_linear_release_datetime"”: U64::from(
L, ptoken_start_linear_release_datetime),

316 "ptoken_vault_maturity_datetime”: U64::from(
L, ptoken_vault_maturity_datetime),

317 "vault_owner_id": vault_owner_id,

318)

319 .gas(parse_gas! ("200 Tgas") as u64)

320 .transact ()

321 .await?

322 .into_result()?;

323 println! ("Create vault: {:?}\n", res);

324

325 registering_accounts/(

326 &metapool_contract,

327 &ptoken_contract,

328 &bond_operator_contract,

329 &katherine_owner_account,

330 &supporter_account ,

331 &buyer_account,

332 &kickstarter_owner_account,

333 &bond_operator_owner,

334)

335 .await?;

336

337 sending_stnear_ptoken_to_vault(

338 &metapool_contract,

339 &ptoken_contract,

340 &bond_operator_contract,

341 &katherine_owner_account,

342 &bond_operator_owner,

343 initial_stnear_balance,

344 initial_ptoken_balance,

345 vault_id.clone (),

346)

347 .await?;

348 sending_stnear_ptoken_to_vault(

349 &metapool_contract,

27

FINDINGS & TECH DETAILS

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

&ptoken_contract,
&bond_operator_contract,
&katherine_owner_account,
&bond_operator_owner,
initial_stnear_balance,
initial_ptoken_balance,
vault_id.clone(),

)

.await?;

let loader_bonds = create_bond_loader (
bonds,
vault_id.clone (),
supporter_account.id().clone(),
ptoken_contract_address.clone(),
U64::from(4 * stnear_vault_maturity_datetime),
U64::from(4 * ptoken_start_linear_release_datetime),

U64::from(4 * ptoken_vault_maturity_datetime),
)

let res = bond_operator_owner
.call(bond_operator_contract.id(), "create_bonds")

.args_json(serde_json::json! ({ "bonds"”: loader_bonds 3}))

.gas(parse_gas! ("200 Tgas") as u64)
.transact ()
.await?
.into_result()?;
println! ("Create bonds: {:?}\n", res);

let bondl1: BondJSON = bond_operator_contract
.call("get_bond")
.args_json(json! ({
"bond_id": 1,
M)
.view()
.await?
.json()?;
println! ("\nBOND1: {:#?3}", bondl);

let bond3: BondJSON = bond_operator_contract
.call("get_bond")
.args_json(json! ({
"bond_id": 3,
M)

28

FINDINGS & TECH DETAILS

394
395
396
397
398
399
400
401
402

L,
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

.view()
.await?
.json()?;
println! ("\nBOND3: {:#?}", bond3);

// 1. Putting bond 3 on sale
let price = U128::from(1@ * ONE_NEAR);
let bond_sale_result = supporter_account
.call(bond_market_contract.id(), "
create_bond_sale_in_millisecs")
.args_json(json! ({
"bond_id": 3,
"bond_operator_address”: bond_operator_contract.id(),
"price"”: price,
"currency”: "NEAR",
"sale_duration_in_millisecs”: U64::from(20 * 1000), //
20 seconds
"is_auction”: true,
)
.max_gas ()
.deposit (1000000000000000000000000)
.transact ()
.await?
.into_result()?;
println! ("SALE RESULT: {:#?}", bond_sale_result);

let bond3: BondJSON = bond_operator_contract
.call("get_bond")
.args_json(json! ({
"bond_id": 3,
)
.view()
.await?
.json()?;
println! ("\nBOND3 after putting on sale: {:#?3}", bond3);

let sale: SaleJSON = bond_market_contract
.call("get_sale”)
.args_json(json! ({"sale_id": @3}))
.view()
.await?

.json()?;

println! ("SALE: {:#?3}", sale);

29

436
437 // placing a bid
438 let halborn_account_balance_before_bid = halborn_account.

L, view_account().await?.balance;

439 let _bid_result = halborn_account

440 .call(bond_market_contract.id(), "place_a_near_bid")
441 .args_json(json! ({"sale_id": 0}))

442 .deposit(price.o + 1)

443 .max_gas ()

444 .transact ()

445 .await?

446 .into_result()?;

447 let halborn_account_balance_after_bid = halborn_account.

L, view_account().await?.balance;

448 println! (
449 "Balance:\n{}\n{}",
450 halborn_account_balance_before_bid,

L, halborn_account_balance_after_bid

451);

452

453 let sale: SaleJSON = bond_market_contract

454 .call("get_sale")

455 .args_json(json! ({"sale_id": @}))

456 .view()

457 .await?

458 .json()?;

459

460 println! ("\nSALE after bid: {:#?}", sale);

461

462 // trying to merge bond 1 and 3

463 halborn_account

464 .call(bond_operator_contract.id(), "merge_bonds")

465 .args_json(json! ({

466 "bond_id": 1,

467 "other_id": 3,

468)

469 .transact ()

470 .await?

471 .into_result()?;

472

473 // waiting for over 20 seconds for the sale to end...

474 println! ("Waiting for the auction to end...");

475 tokio::time::sleep(tokio::time::Duration::from_secs(21)).await
Lo

FINDINGS & TECH DETAILS

FINDINGS & TECH DETAILS

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516 }

println! ("Auction should be done by now...");

// trying to complete the auction sale...
let pull_result = halborn_account
.call(bond_market_contract.id(), "pull_sale_bond")
.args_json(json! ({
"sale_id": @
M)
.max_gas ()
.transact ()
.await?
.into_result()?;
println! ("\nPULL RESULT: {:#?3}", pull_result);

let sale: SaleJSON = bond_market_contract
.call("get_sale")
.args_json(json! ({"sale_id": 0}))
.view()
.await?

.json()?;

println! ("\nSale after trying to pull it: {:#?}", sale);

let halborn_account_balance_after_trying_to_pull =
halborn_account.view_account().await?.balance;
println! (
"Balance after trying to complete auction: {}",
halborn_account_balance_after_trying_to_pull

)

let remove_bid_result = halborn_account
.call (bond_market_contract.id(), "remove_loser_bid")
.args_json(json! ({"sale_id": @}))
.transact ()
.await?
.into_result();

if let Err(res) = remove_bid_result {
println! ("ERR: {}", res);

3

Ok ()

31

FINDINGS & TECH DETAILS

Recommendation:

It is recommended to implement an authorization check in the merge_bonds

function so that only the user who owns both bonds can merge them.
Additionally, merging and splitting bonds should be possible only for
bonds that are not on sale.

Remediation Plan:

SOLVED: The MetaPool has solved this issue in commit ef7772ff by adding
a verification mechanism that makes sure only the owner can merge bonds

and only if neither bond is on sale.

32

https://github.com/Narwallets/katherine-fundraising/commit/ef7772ff97224c978b676e76fa2f4f962e73dc85

FINDINGS & TECH DETAILS

4.2 (HAL-02) LOSS OF REWARDS DUE TO
KICKSTARTER UPDATE - LOW (2.0)

Description:

Our analysis revealed a potential vulnerability in the KatherineFundraising
contract, specifically in the function update_kickstarter. This
function allows either the contract’s owner or Kickstarter’s owner
to modify details pertaining to the fundraising effort. However,
the implementation of the update_kickstarter function is flawed as
it inadvertently resets storage variables tied to the Kickstarter,

including the available_rewards_tokens.

The available_rewards_tokens variable is crucial, as it stores the quan-
tity of project tokens (ptokens) available to be offered as rewards for
supporters. The current implementation of the update_kickstarter func-
tion, however, resets this variable to zero each time it is called. As a
result, it can unintentionally erase information regarding the remaining
ptokens, leading to their loss.

Interestingly, this loss of reward tokens occurs even if there are no
changes made to the ptoken contract itself. This issue poses a significant
threat to the integrity of the fundraising efforts, as it could lead
to supporters not receiving the ptokens they were promised, thereby
undermining trust in the system. Further, the loss of ptokens could
negatively impact the overall fundraising process.

Thus, it is essential to address this vulnerability, to ensure proper
functioning of the update_kickstarter function, and maintain the accurate
count of available_rewards_tokens to protect the integrity and reliability
of the KatherineFundraising contract.

Code Location:

Down below is a code snippet from the internal_update_kickstarter func-

tion:

33

FINDINGS & TECH DETAILS

pub(crate) fn internal_update_kickstarter(
&mut self,
old_kickstarter: Kickstarter,

name: String,

slug: String,

owner_id: AccountId,

open_timestamp: EpochMillis,

close_timestamp: EpochMillis,

token_contract_address: AccountId,

deposits_hard_cap: U128,

max_tokens_to_release_per_stnear: U128,

token_contract_decimals: u8

assert! (

get_current_

old_kickstarter.open_timestamp >=
epoch_millis(),
"Changes are not allow after the funding period

id = old_kickstarter.id;

kickstarter = Kickstarter {

id,

name ,

slug,

goals: Vector::new(Keys::Goals.as_prefix(&id.to_string

started!"”

g

let

let
()).as_bytes()),

winner_goal_id: None,

katherine_fee: None,

total_tokens_to_release: None,

deposits: UnorderedMap::new(Keys::Deposits.as_prefix (&

id.to_string()).as_bytes()),

as_bytes (),

as_bytes (),

rewards_withdraw: UnorderedMap::new(
Keys::RewardWithdraws.as_prefix(&id.to_string()).

),

stnear_withdraw: UnorderedMap::new(
Keys::StnearWithdraws.as_prefix(&id.to_string()).

Do
total_deposited: @,

deposits_hard_cap: deposits_hard_cap.@,

34

FINDINGS & TECH DETAILS

400 max_tokens_to_release_per_stnear:
L, max_tokens_to_release_per_stnear.o,
401 enough_reward_tokens: false,
402 owner_id,
403 active: true,
404 successful: None,
405 stnear_price_at_freeze: None,
406 stnear_price_at_unfreeze: None,
407 creation_timestamp: get_current_epoch_millis(),
408 open_timestamp,
409 close_timestamp,
410 token_contract_address,
411 token_contract_decimals,
412 available_reward_tokens: @,
413 };
414 kickstarter.assert_timestamps();
415 self.kickstarters.replace(id as u64, &kickstarter);
416 self.kickstarter_id_by_slug.remove (&old_kickstarter.slug);
417 self.kickstarter_id_by_slug
418 .insert(&kickstarter.slug, &kickstarter.id);
419 3
420 }
BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:C/R:N/S:U (2.0)

Recommendation:

It is recommended to implement an update_kickstarter function in a way
that will not generate value loss in an underlying asset. If the AccoundId
associated with ptoken is not changed, then the available_reward_tokens
value should not be zeroed-out. On the other hand, if that AccountId
changes, then returning already sent tokens to the previous owner may be
considered.

35

FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: The MetaPool team has solved this issue in commit efadbdc7 by
deprecating (and effectively deleting) the update_kickstarter function.

36

https://github.com/Narwallets/katherine-fundraising/commit/efadbdc72f88b9a326828e0d31655d92274a5734

FINDINGS & TECH DETAILS

4.3 (HAL-03) DENIAL OF SERVICE
CONDITION DUE TO STORAGE BLOATING -
INFORMATIONAL (0.5)

Description:

During our analysis, we identified a potential issue with the create_vault
function, which pertains to the handling of deposit amounts associated
with storage fees. The function currently adds values to the contract’s
storage without ensuring that a sufficient deposit has been sent with
the call to cover these storage costs. Importantly, the design of the
create_vault function does not currently allow for a deposit to be made
at the time of the call.

Without an accompanying deposit, the contract is forced to compensate for
storage fees from its own free balance. If the contract’s free balance
is insufficient, the call to create_vault will fail due to lack of funds
to cover the storage fees.

This situation presents a considerable vulnerability, as it potentially
disrupts the contract’s operations and the creation of new vaults. More-
over, it places an undue burden on the contract’s free balance, which
could have serious implications if it is not properly monitored and

managed.

Code Location:

Down below is a code snippet from the create_vault function:

Listing 4: contracts/bond-operator-contract/src/lib.rs

pub fn create_vault(
&mut self,
vault_id: VaultId,
stnear_price_at_freeze: U128,
initial_stnear_balance: U128,

initial_ptoken_balance: U128,

37

FINDINGS & TECH DETAILS

152 ptoken_contract_address: String,

153 stnear_freeze_timestamp: U64,

154 interest_beneficiary_until_unfreeze: String,
155 interest_beneficiary_near_claimed: U128,
156 bond_owners_near_claimed: U128,

157 bond_owners_ptoken_claimed: U128,

158 stnear_vault_maturity_datetime: U64,

159 ptoken_start_linear_release_datetime: U64,
160 ptoken_vault_maturity_datetime: U64,

161 vault_owner_id: String

162) {

163 self.assert_only_owner ();

164 self.assert_new_vault_id(&vault_id);

165

166 let vault = Vault::new(

167 vault_id.clone(),

168 stnear_price_at_freeze.9,

169 initial_stnear_balance.@,

170 initial_ptoken_balance.9,

171 ptoken_contract_address.try_into().unwrap(),
172 stnear_freeze_timestamp.o,

173 interest_beneficiary_until_unfreeze.try_into().unwrap(),
174 interest_beneficiary_near_claimed.@,
175 bond_owners_near_claimed.Q,

176 bond_owners_ptoken_claimed.o,

177 stnear_vault_maturity_datetime.@,

178 ptoken_start_linear_release_datetime.o@,
179 ptoken_vault_maturity_datetime.Q,

180 vault_owner_id.try_into().unwrap ()

181)

182 self.vaults.insert(&vault_id, &vault);

183 }

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:C/D:N/Y:N/R:F/S:U (0.5)

Recommendation:

To address this issue, it is recommended to revise the create_vault
function to accept a deposit that can adequately cover the storage fees.

FINDINGS & TECH DETAILS

This will ensure the contract’s free balance is preserved and prevent the
disruption of contract operations due to insufficient funds.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commits 164fecd8 and
7e108822 by implementing a requirement for the caller to cover the storage
fee associated with creating a new vault.

39

https://github.com/Narwallets/katherine-fundraising/commit/164fecd8f821f9dc26521e32812a8aa0dde3d1e5
https://github.com/Narwallets/katherine-fundraising/commit/7e108822b36fd1c7c627db69e5ecc89660b8083c

FINDINGS & TECH DETAILS

4.4 (HAL-04) REDUNDANT STATE
VALIDATION - INFORMATIONAL (©.0)

Description:

It was observed that the KatherineFundrasing contract implements a manual
assertion in new function that checks if the contract’s state already
exists. However, the new function is also marked with #[init] macro which
implements this behavior by default, making manual assertion redundant

Code Location:

Down below is a code snippet from the new function:

45 #[init]

46 pub fn new(

47 owner_id: AccountId,

48 min_deposit_amount: U128,

49 metapool_contract_address: AccountId,

50 katherine_fee_percent: BasisPoints,

51) -> Self {

52 assert! (!env::state_exists(), "The contract is already
L, initialized");

53 Self {

54 owner_id,

515 supporters: UnorderedMap::new(Keys::Supporters),
56 kickstarters: Vector::new(Keys::Kickstarters),
57 kickstarter_id_by_slug: UnorderedMap::new(Keys::
L, KickstarterId),

58 min_deposit_amount: min_deposit_amount.Q,

59 metapool_contract_address,

60 katherine_fee_percent,

61 max_goals_per_kickstarter: 5,

62 active_projects: UnorderedSet::new(Keys::Active),
63 }

64 }

40

FINDINGS & TECH DETAILS

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to remove redundant code.

Remediation Plan:

SOLVED: The MetaPool team has solved this issue in commit 6727d175 by
removing the redundant code.

41

https://github.com/Narwallets/katherine-fundraising/commit/6727d1753be7fa37466a73b34f41f0e9bc7886c9

FINDINGS & TECH DETAILS

4.5 (HAL-05) REDUNDANT MANUAL
CALLBACK ASSERTION - INFORMATIONAL
(0.0)

Description:

The activate_successful_kickstarter_after function is marked with #[
private] macro, which allows this function to only be called by the con-
tract itself. However, it was observed that this function is also manually
asserting that the predecessor_account_id is equal to current_account_id.

Code Location:

Down below is a code snippet from the assert_self function:

16 pub fn assert_self () {

17 assert_eq! (env::predecessor_account_id(), env::
L, current_account_id(), "Method is private");
18 }

Down below is a code snippet from the activate_successful_kickstarter_after
function:

97 #[private]

98 pub fn activate_successful_kickstarter_after(
99 &mut self,

100 kickstarter_id: KickstarterlId,

101 goal_id: Goalld,

102) {

103 assert_self ();

Nz assert_eq! (

105 env::promise_results_count(),

FINDINGS & TECH DETAILS

106
107
108
109
110
111
112

113
114

115
116
117
118

119
120
121
122

123
124
125
126

127
128

129

130
131
132
133
134
135
136

L
137

N
138
139
140

1
"This is a callback method”

let st_near_price = match env::promise_result (@) {
PromiseResult::NotReady => unreachable! (),
PromiseResult::Failed => panic! ("Meta Pool is not
available!"),
PromiseResult::Successful (result) => {

let price = near_sdk::serde_json::from_slice::<U128
>(&result).unwrap();
price.@
Hy
i
let mut kickstarter = self.internal_get_kickstarter(
kickstarter_id);

match kickstarter.goals.get(goal_id as u64) {
None => panic! ("Kickstarter did not achieved any goal!"),
Some (goal) => {
let total_tokens_to_release = self.
calculate_total_tokens_to_release(
&kickstarter,
goal.tokens_to_release_per_stnear
)
let katherine_fee = self.calculate_katherine_fee(
total_tokens_to_release);
assert! (
kickstarter.available_reward_tokens >= (
total_tokens_to_release + katherine_fee),
"Not enough available reward tokens to back the
supporters rewards!”

)5
kickstarter.winner_goal_id = Some(goal.id);
kickstarter.active = false;

self.active_projects.remove (&kickstarter.id);

kickstarter.successful = Some(true);
kickstarter.katherine_fee = Some(katherine_fee);
kickstarter.total_tokens_to_release = Some(

total_tokens_to_release);
kickstarter.stnear_price_at_freeze = Some(
st_near_price.into());
self.kickstarters
.replace(kickstarter_id as u64, &kickstarter);

43

FINDINGS & TECH DETAILS

141 1
142}
143

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to remove redundant code.

Remediation Plan:

SOLVED: The MetaPool team has solved this issue in commit abe7e854 by

removing redundant code.

44

https://github.com/Narwallets/katherine-fundraising/commit/abe7e85422612fdc5db4cc25edac879a2078060a

FINDINGS & TECH DETAILS

4.6 (HAL-06) NOT NECESSARY MACRO
USAGE - INFORMATIONAL (0.0)

Description:

Some impl blocks of KatherineFundraising contract are marked with #[
near_bindgen] macro, although they define only internal functions.

Code Location:

Down below is a code snippet from the internal_create_goal function:

36 #[near_bindgen]
37 impl KatherineFundraising {

38 pub(crate) fn internal_create_goal(

39 &mut self,

40 kickstarter: &mut Kickstarter,

41 name: String,

42 desired_amount: U128,

43 unfreeze_timestamp: EpochMillis,

44 tokens_to_release_per_stnear: U128,

45 cliff_timestamp: EpochMillis,

46 end_timestamp: EpochMillis,

47) -> Goalld {

48 kickstarter.assert_goal_status();

49 kickstarter.assert_before_funding_period();
50 kickstarter.assert_number_of_goals(self.

L, max_goals_per_kickstarter);

57

52 let desired_amount = desired_amount.9;

53 let tokens_to_release_per_stnear =

L, tokens_to_release_per_stnear.9;

54 let id = kickstarter.get_number_of_goals();

55 assert! (

56 kickstarter.deposits_hard_cap >= desired_amount,

57 "Desired amount must not exceed the deposits hard cap!
Lo"

45

FINDINGS & TECH DETAILS

58)
59 assert! (

60 kickstarter.max_

L, tokens_to_release_per_stnear

tokens_to_release_per_stnear >=

’

61 "Tokens to release must not exceed the max tokens to
L, release per stNEAR!"

62) g

63 if id > 0 {

64 let last_goal = kickstarter.goals.get((id - 1) as u64)
L .unwrap();

65 assert! (

66 desired_amount >= last_goal.desired_amount,

67 "Next goal cannot have a lower desired amount that
L., the last goall!”

68);

69 assert! (

70 unfreeze_timestamp <= last_goal.unfreeze_timestamp
L

71 "Next goal cannot freeze supporter funds any

L, longer than the last goal!"”

72);

73 assert!(

74 tokens_to_release_per_stnear >= last_goal.

L, tokens_to_release_per_stnear,

75 "Next goal cannot release less pTOKEN than the
L, last goal!”

76 E

77 3}

78 let goal = Goal {

79 id,

80 name ,

81 desired_amount,

82 unfreeze_timestamp,

83 tokens_to_release_per_stnear,

84 cliff_timestamp,

85 end_timestamp,

86 i

87 kickstarter.goals.push(&goal);

88 self.kickstarters

89 .replace(kickstarter.id as u64, &kickstarter);

90 goal.id

91 }

92

46

FINDINGS & TECH DETAILS

. T
Ly

94 kickstarter.assert_goal_status();

95 kickstarter.assert_before_funding_period();

96 kickstarter.goals.pop();

97 self.kickstarters

98 .replace(kickstarter.id as u64, &kickstarter);

99 3}

100 }

Down below is a code snippet from the assert_min_deposit_amount function:

w dCnearbindgend
46 impl KatherineFundraising {

47 fn assert_min_deposit_amount(aself, amount: Belance) ¢
48 assert! (

49 amount >= self.min_deposit_amount,

50 "minimum deposit amount is {}",

51 self.min_deposit_amount

52 E

53 }

54

55 /// Process a stNEAR deposit to Katherine Contract.

6 fnprocess_supporter_deposit(
57 &mut self,

58 supporter_id: &AccountId,

59 amount: &Balance,

60 kickstarter: &mut Kickstarter,

61) {

62 // Update Kickstarter

63 kickstarter.assert_within_funding_period();

64 kickstarter.assert_enough_reward_tokens();

65

66 let new_total_deposited = kickstarter.total_deposited +

L, amount;

67 assert!(

68 new_total_deposited <= kickstarter.deposits_hard_cap,
69 "The deposits hard cap cannot be exceeded!”

70 E

71 kickstarter.total_deposited = new_total_deposited;

FINDINGS & TECH DETAILS

72 kickstarter.update_supporter_deposits(&supporter_id,
L, amount);

73 self.kickstarters

74 .replace(kickstarter.id as u64, &kickstarter);

75

76 // Update Supporter.

77 let mut supporter = self.internal_get_supporter (&

L, supporter_id);

78 supporter.supported_projects.insert(&kickstarter.id);
79 self.supporters.insert (&supporter_id, &supporter);

80 3

81

82 /// Process a reward token deposit to Katherine Contract.
83 fn process_kickstarter_deposit(

84 &mut self,

85 amount: Balance,

86 kickstarter: &mut Kickstarter,

87) |

88 assert_eq! (

89 &env::predecessor_account_id(),

90 &kickstarter.token_contract_address,

91 "Deposited tokens do not correspond to the Kickstarter

L, contract.”

92)

93 assert! (

94 get_current_epoch_millis() < kickstarter.

L, close_timestamp,

95 "Kickstarter Tokens should be provided before the
L, funding period ends.”

96 g

97 let amount = kickstarter.less_to_24_decimals (amount);
98 let max_tokens_to_release = self.

L, calculate_max_tokens_to_release(&kickstarter);

99 let min_tokens_to_allow_support = max_tokens_to_release
100 + self.calculate_katherine_fee(max_tokens_to_release);
101 kickstarter.available_reward_tokens += amount;

102 kickstarter.enough_reward_tokens = {

103 kickstarter.available_reward_tokens >=

L, min_tokens_to_allow_support

104 };

105 self.kickstarters

106 .replace(kickstarter.id as u64, &kickstarter);
[y, }

108 }

48

FINDINGS & TECH DETAILS

109

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to remove the unnecessary #[near_bindgen] macro usage.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit 25c435f5 by removing
the unnecessary macro usage.

49

https://github.com/Narwallets/katherine-fundraising/commit/25c435f576f9861ba14f19fb8be7e8000fe4fab2

FINDINGS & TECH DETAILS

4.7 (HAL-07) REDUNDANT FUNCTION -
INFORMATIONAL (0.0)

Description:

The KatherineFundraising contract defines a delete_kickstarter function.
All the function does is cause the contract to panic with information
that a Kickstarter cannot be deleted. The KatherineFundraising contract
does not implement any standard that would require delete_kickstarter
function to be present. As a consequence, there is no value originating
from this function, yet it is present in the wasm binary making it bigger,
which directly impacts the deployment costs.

Code Location:

Down below is a code snippet from the delete_kickstarter function:

362 pub fn delete_kickstarter (&mut self, id: KickstarterId) {
363 panic! ("Kickstarter {} must not be deleted!"”, id);
364 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to delete unnecessary function.

50

FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit 6727d175 by removing
the delete_kickstarter function.

51

https://github.com/Narwallets/katherine-fundraising/commit/6727d1753be7fa37466a73b34f41f0e9bc7886c9

FINDINGS & TECH DETAILS

4.8 (HAL-08) DEAD CODE -
INFORMATIONAL (0.0)

Description:

It was observed that the code present in the interest.rs file in the
KatherineFundraising contract is completely commented out.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to delete files that are not adding a meaningful logic
implementation.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit 6727d175 by deleting
the dead code.

52

https://github.com/Narwallets/katherine-fundraising/commit/6727d1753be7fa37466a73b34f41f0e9bc7886c9

FINDINGS & TECH DETAILS

4.9 (HAL-09) JAVASCRIPT
INCOMPATIBLE TYPE - INFORMATIONAL
(0.0)

Description:

It was observed that creating a kick-starter in KatherineFundraising
contract requires the caller to send arguments of type u64. The contract
is interacted with by JavaScript API directly or indirectly via near-cli.
JavaScript does not support the whole range of u64 type, and the max value
that could be represented with precision is equal to 2**53 - 1. Providing
a value higher than that one will result in imprecise representation (the
actual value would be different from what the user supplied) or in error.
It is worth noting that values that could be impacted by this finding are
associated with timestamps, and it is implausible for regular interaction
to require supplying values that could break this functionality.

Code Location:

7 pub type EpochMillis = u64;

Exemplary usage of EpochMillis type as user-facing function:

333 pub fn create_kickstarter(

334 &mut self,

335 name: String,

336 slug: String,

337 owner_id: AccountId,

338 open_timestamp: EpochMillis,
339 close_timestamp: EpochMillis,

53

FINDINGS & TECH DETAILS

340 token_contract_address: AccountId,

341 deposits_hard_cap: U128,

342 max_tokens_to_release_per_stnear: U128,
343 token_contract_decimals: u8,

344) -> KickstarterId {

345 self.assert_only_owner ();

346 self.assert_unique_slug(&slug);

347 let id = self.kickstarters.len() as KickstarterId;
348 self.internal_create_kickstarter(

349 id,

350 name ,

351 slug,

352 owner_id,

353 open_timestamp,

354 close_timestamp,

B55 token_contract_address,

356 deposits_hard_cap,

357 max_tokens_to_release_per_stnear,
358 token_contract_decimals

359)

360 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to convert u64 into NEAR’s U64 type.

Remediation Plan:

SOLVED: The MetaPool team solved this issue in commit ecaf7820 by changing

the u64 type to U64 json-compatible type.

54

https://github.com/Narwallets/katherine-fundraising/commit/ecaf7820ec5dbd797ae06e5968986138c375baab

FINDINGS & TECH DETAILS

4.10 (HAL-10) POSSIBLE
OPTIMIZATIONS TO REDUCE BINARY
SIZE - INFORMATIONAL (0.0)

Description:

Contract size directly corresponds to the costs associated with its
operation, mainly - the deployment. Although many of the strategies aimed
at reducing the compiled binary size achieve this goal at the expense
of code readability, there are some measures that could be implemented
without such sacrifices.

It was observed that Cargo.toml files of KatherineFundraising,
BondOperator and BondMarket contracts specified the crate-type as both
cdylib and rlib, however usually only cdylib is necessary. Specifying
the crate-type to only cdylib resulted in a wasm binary size reduction
of 13.1%, 11.5% and 10.8% respectively.

Code Location:

7 [1lib]
8 crate-type = ["cdylib”, "rlib"]
7 [1ib]
8 crate-type = ["cdylib”, "rlib"]

7 [1ib]
8 crate-type = ["cdylib”, "rlib"]

55

FINDINGS & TECH DETAILS

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to delete rlib from the crate-type list.

Remediation Plan:

SOLVED: The MetaPool team has solved this issue in commit b4ba2cec by
removing rlib from crate-type list.

56

https://github.com/Narwallets/katherine-fundraising/commit/b4ba2cecec752d136066a1c132ee0e43b6021734

FINDINGS & TECH DETAILS

4.11 (HAL-11) OUTDATED
DEPENDENCIES - INFORMATIONAL (0.0)

Description:

It was observed that dependencies defined in Cargo.toml file for
KatherineFundraising contract are not using their latest versions.
Namely:

® near-sdk

® near-contract-standards

Code Location:

10 [dependencies]

11 near-sdk = "3.1.0"

12 near-contract-standards = "3.1.1"
13 uint = "0.9.3"

14 json = "0.12.4"

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

It is recommended to update the dependencies to the latest version.

Remediation Plan:

ACKNOWLEDGED: The MetaPool team has acknowledged this issue, and decided
to keep the current dependency versions not to introduce breaking changes,

57

FINDINGS & TECH DETAILS

since newer version of NEAR SDK introduce drastic changes in cross-
contract call API.

58

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	BVSS
	Proof Of Concept
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

